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Abstract  

Psychological evidences of impulsivity and false consensus effect lead 

results far from rationality. It is shown that impulsivity modifies the 

discount function of each individual, and false consensus effect increases 

the degree of consensus in a multi-agent decision problem. Analyzing 

them together we note that in strategic interactions these two human 

factors involve choices which change equilibriums expected by rational 

individuals. 
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1. Introduction 

In 1937, to compare future alternatives, Samuelson introduced the 

Discounted Utility Model (DU model), which assumes an exponential delay 

discount function, with a constant discount rate that implies dynamic 

consistency and stationary intertemporal preferences. Contrary to this normative 

economic theory, it has been established that human and animal intertemporal 

choice behaviors are not rational (i.e., inconsistent). For this reason, recent 

behavioral decision theory on intertemporal choice has adopted a hyperbolic 

discount model, in which result preference reversal as time passes (Takahashi, 

2009) (Section 2). 

Neurobiological and psychological factors have determined individual 

differences in intertemporal choice and have been explored in recent 

neuroeconomic and econophysical studies. Takahashi (2007) attempts to 

dissociate impulsivity and inconsistency in their econophysical studies 

proposing the Q-exponential Delay Discount Function. Other behavioral 

economists propose Multiple Selves Models attempting to measure the strength 

of the internal conflict within the decision maker, best known as Quasi-

hyperbolic discount model first introduced by Laibson (1997) (Section 3). 

Thaler and Shefrin (1981), in the field of Multiple Selves Models, consider 

that the concept of self-control is incorporated in a theory of individual 

intertemporal choice by modeling the individual as an organization. The 

individual is treated as if he contained two distinct psyches denoted as planner 

and doer. This model can be compared with the principal-agent problem present 

in any organization, so the individual may adopt many of the same strategies to 

solve self-control problems in intertemporal choice (Section 4). 

In a multi-agent decision context the objective for a group decision is to 

choose a common decision, among each choice, that is to say an alternative 

which is judged the best by the majority of the decision makers. So in most 

strategic decisions, it is important to be able to estimate the characteristics and 

behavior of others. If the characteristics of other players are unknown, 

estimating them is a critical task. Moreover, psychological evidence suggests 

people’s own beliefs, values, and habits tend to bias their perceptions of how 

widely they are shared (false consensus effect). This effect demonstrates an 

inability of individuals to process information rationally (Section 5). 

Therefore when we use the aggregation of the agents’ preferences to assess 

consensus, we obtain a coefficient which includes the false consensus effect that 
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depends on the subjectivity and also increases the degree of consensus. To 

eliminate this aspect of human judgment vagueness we can use a model defined 

by ordered weighted averaging (OWA) operators introduced in Yager (1988) 

(Section 6). 

Many decision problems are characterized by interplay between 

intertemporal considerations and strategic interactions. Two or more agents 

could have to take a common decision for a future time, in that process they are 

influenced by false consensus effect and by impulsivity that reveals 

inconsistency. Finally in order to consider intertemporal choices in a multi-agent 

decision process needs to study the problem of each agent and the influence of 

false consensus effect (Section 7). A strategic interaction is mathematical 

developed with the use of the theory of games, then it is possible to demonstrate 

the difference of psychological influence between a cooperative interaction 

(Section 8) and non-cooperative one (Section 9). 

 

2. Intertemporal Discounting 

Standard discount model. The standard economic model of discounted 

utility (DU model) assumes that economic agents make intertemporal choices 

over consumption profiles (𝑐𝑡, … , 𝑐𝑇) and such preferences can be represented 

by an intertemporal utility function 𝑈𝑡(𝑐𝑡, … , 𝑐𝑇), which can be described by 

the following form: 

 

𝑈𝑡(𝑐𝑡, … , 𝑐𝑇) = ∑ 𝐷(𝑘)𝑢(𝑐𝑡+𝑘
𝑇−𝑡
𝑘=0 )   where   𝐷(𝑘) =  (

1

1+𝜌
)

𝑘

 

 

So the DU model assumes an exponential temporal discounting function and 

a constant discount rate (𝜌). An important implication of these two features is 

that a person’s intertemporal preferences are time-consistent: if in period t a 

person prefers 𝑐2 at t+2 to 𝑐1 at t+1, then in period t+1 she must prefer 𝑐2 at 

t+2 to 𝑐1 instantly. 

However, several empirical studies, mainly arisen from the field of 

psychology, have documented various inadequacies of the DU model as a 

descriptive model of behavior. 

The first anomaly found to contradict discounted utility was that, instead of 

remaining constant over time, observed discount rates appear to decline with 



M. Olivieri, M. Squillante, V. Ventre 
 

6 

 

time, this reveal decreasing impatience, or hyperbolic discounting: a later 

outcome is discounted less per unit of time than an earlier one (delay effect). 

Furthermore, other anomalies derive from the fact that, even for a given 

delay, discount rates vary across different types of intertemporal choices: 

- larger outcomes are discounted at a lower rate than smaller outcomes 

(magnitude effect); 

- gains are discounted at a higher rate than losses of the same magnitude (sign 

effect); 

- increasing sequences of consumption are preferred over decreasing ones 

even if the total amount is the same (improving sequence effect). 

 

Hyperbolic discount model. A hyperbolic discount model can represent the 

tendency of the individuals to increasingly choose a smaller-sooner reward over 

a larger-later reward as the delay occurs sooner in time (delay effect). 

Many authors proposed different hyperbolic discount functions, in which δ 

(temporal discount function) increases with the delay to an outcome. In 1992 

Loewenstein and Prelec proposed this form: 

 

𝑑(𝑡) = (
1

1 + 𝛼𝑡
)

𝛽 𝛼⁄

 

 

where β > 0 is the degree of discounting and α > 0 is the departure from 

exponential discounting. 

A second type of empirical support for hyperbolic discounting comes from 

experiments on dynamic inconsistency. Several studies report systematic 

preference reversals between two rewards as the time-distance to these rewards 

diminishes. A hyperbolic discount model can demonstrate this; in fact, non-

exponential time-preference curves can cross (Strotz, 1955/56) and 

consequently the preference for one future reward over another may change with 

time. 
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3. Neuroeconomics: two model to consider 

impulsivity and inconsistency in intertemporal 

choice 

Behavioral economist have found that there is a number of behavior patterns 

that violate the rational choice theory (Kahneman et al., 1982; Thaler, 1991); 

the most important is inconsistent preference, which represent behavior 

typically seen in psychiatric disorders (alcoholism, drug abuse), but also in more 

ordinary phenomena (overeating, credit card debt). 

Neuroeconomics has found that addicts are more myopic (have large time-

discount rates) in comparison to non-addicted populations (Ainslie, 1975; 

Bickel, et al. 1999), so hyperbolic discounting may explain various human 

problematic behaviors (Laibson, 1997): loss of self-control, failure in planned 

abstinence from addictive drugs, etc. 

Recently, behavioral neuroeconomic and econophysical studies have 

proposed two discount models, in order to better describe the neural and 

behavioral correlates of impulsivity and inconsistency in intertemporal choice. 

 

Q-exponential discount model. Takahashi et al. (2007) have proposed and 

examined this function for subjective value V(D) of delayed reward: 

 

𝑉(𝐷) =
𝐴

𝑒𝑥𝑝𝑞(𝑘𝑞𝐷)
= 𝐴/[1 + (1 − 𝑞)𝑘𝑞𝐷]

1
1−𝑞 

 

where D denotes a delay until receipt of a reward, A the value of a reward at D 

= 0, and kq a parameter of impulsivity at delay D = 0 (q-exponential discount 

rate) and the q-exponential function is defined as: 

 

𝑒𝑥𝑝𝑞(𝑥) =  (1 + (1 − 𝑞))
1

1−𝑞 

 

This function can distinctly parametrized impulsivity and inconsistency. If q 

< 0, the intertemporal choice behavior is more inconsistent than hyperbolic 

discounting (Ventre and Ventre, 2012). 
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Quasi-hyperbolic discount model. Behavioral economists have proposed 

that the inconsistency in intertemporal choice may be attributable to an internal 

conflict between “multiple selves” within a decision maker. As a consequence, 

there are (at least) two exponential discounting selves (with two exponential 

discount rates) in a single human individual; and when delayed rewards are at 

the distant future (>1 year), the self with a smaller discount rate wins, while 

delayed rewards approach to the near future (within a year), the self with a larger 

discount rate wins, resulting in preference reversal over time. This intertemporal 

choice behavior can be parametrized in a quasi-hyperbolic discount model (also 

as a β-δ model) (Laibson 1997; O’Donoghue and Rabin, 1999). 

For discrete time τ (the unit assumed is one year) it is defined as (Laibson, 

1997): 

 

𝐹(𝜏) = 𝛽𝛿𝑡  (for τ=1,2,3,…)   and    𝐹(0) = 1      (0 < 𝛽 < 𝛿 < 1). 

    

A discount factor between the present and one-time period later (β) is smaller 

than that between two future time-periods (δ).  

In the continuous time, the proposed model is equivalent to the linearly-

weighted two-exponential functions (generalized quasi-hyperbolic 

discounting): 

 

𝑉(𝐷) = 𝐴[𝑤 exp(−𝑘1𝐷) + (1 − 𝑤) exp(−𝑘2𝐷)] 

 

where w, 0 < w < 1, is a weighting parameter and k1 and k2 are two exponential 

discount rates (k1 < k2). Note that the larger exponential discount rate of the two 

k2, corresponds to an impulsive self, while the smaller discount rate k1 

corresponds to a patient self (Ventre and Ventre, 2012). 

These economists proposed different Multiple Self Models, which often draw 

analogies between intertemporal choice and a variety of different models of 

interpersonal strategic interactions. 

 

4. Self-control in intertemporal choices 

In many cases a dynamic inconsistent behavior is attributed to the existence 

of contingent “temptations” that increase impulsivity and induce a deviation 

from the desirable behavior. What the person knows to be his best long run 

interest conflict with his short run desires. 
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Stroz’s model. To represent this incoherent purpose, Strotz (1955) proposed 

two strategies that might be employed by a person who foresees how her 

preferences will change over time. 

The “strategy of pre-commitment”: a person can commits to some plan of 

action. For example, consider a consumer with an initial endowment K0 of 

consumer goods which has to be allocated over the finite interval (0, T). At time 

period t he wishes to maximize his utility function: 

 

𝐽0 = ∫ 𝜆(𝑡 − 0)𝑈[
𝑇

0
𝑐̅(𝑡), 𝑡]𝑑𝑡     subject to     ∫ 𝑐(𝑡)𝑑𝑡 = 𝐾0

𝑇

0
 

 

where [𝑐̅(𝑡), 𝑡], is the instantaneous rate of consumption at time period t, and λ(t 

− 0) is a discount factor, the value of which depends upon the elapse of time 

between a past or future date and present.  And this implies that the discounted 

marginal utility of consumption should be the same for all periods. But, at a later 

date, the consumer may reconsider his consumption plan. The problem then is 

to maximize 

 

𝐽0 = ∫ 𝜆(𝑡 − 𝜏)𝑈[
𝑇

0
𝑐(𝑡), 𝑡]𝑑𝑡    subject to     ∫ 𝑐(𝑡)𝑑𝑡 = 𝐾𝜏 = 𝐾0 −

𝑇

𝜏

∫ 𝑐(𝑡)𝑑𝑡
𝜏

0
 

 

 The optimal pattern of consumption will change with changes in τ and if the 

original plan is altered, the individual is said to display dynamic inconsistency. 

Strotz showed that individuals will not alter the original plan only if 𝜆(𝑡, 𝜏) is 

exponential in |t − τ|. 

The “strategy of consistent planning”: since pre-commitment is not always 

a feasible solution to the problem of intertemporal conflict, an individual may 

adopt a different strategy: take into account future changes in the utility function 

and reject any plan that he will not follow through. His problem is then to find 

the best plan among those he will actually follow. 

 

Thaler and Shefrin’s model. In the setting of Multiple Selves Models, to 

control impulsivity, Thaler and Shefrin (1981) proposed a “planner-doer” model 

which draws upon principal-agent theory. They treat an individual as if he 

contained two distinct psyches: one planner, which pursue longer-run results, 

and multiple doers, which are concerned only with short-term satisfactions, so 
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they care only about their own immediate gratification (and have no affinity for 

future or past doers).  

For example, consider an individual with a fixed income stream 𝑦 =

[𝑦1, 𝑦2, … , 𝑦𝑇],where 

 

 ∑ 𝑦𝑡 = 𝑌𝑡  

 

which has to be allocated over the finite interval (0, T). The planner would 

choose a consumption plan to maximize his utility function 

 

𝑉(𝑍1, 𝑍2, … , 𝑍𝑇)   subject to   ∑ 𝑐𝑡 ≤ 𝑌𝑡
𝑡=1  

 

in which such 𝑍𝑡 is a function of utility of level consumption in t (𝑐𝑡). 

On the other hand, an unrestrained doer 1 would borrow 𝑌 − 𝑦1 on the capital 

market and therefore choose c1 = Y; the resulting consequence is naturally 𝑐2 =

𝑐3 = ⋯ = 𝑐𝑇 = 0. Such action would suggest a complete absence of psychic 

integration. 

Then the model focuses on the strategies employed by the planner to control 

the behavior of the doers, and it proposes two instruments he can use. (a) He can 

impose rules on the doers’ behavior, which operate by altering the constraints 

imposed on any given doer. Pure rules, like pre-commitment, can be a very 

effective self-control strategy because they eliminate all choice. The advantage 

of these strategies is that once in place they require little or no self-enforcement. 

However, they may be unavailable or too expensive. (b) He can use discretion 

accompanied by some method of altering the incentives or rewards to the doer 

without any self-imposed constraints. One planner can alter the doer’s utility 

function directly introducing a modification parameter 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑇 . Z is 

assumed to be a function of two arguments, ct and θT. If θT = 0, then the doer is 

completely unrestrained. As θt increases, both Z and (δZt)/(δct) are reduced. θ 

might be thought of as a guilt parameter. The higher is θt , the more guilt the 

doer feels for any level of ct (Ventre and Ventre, 2012). 

In conclusion, the essential insight that Multi Selves Model capture is that, 

much like cooperation in a social dilemma, self-control often requires the 

cooperation of a series of temporally situated selves. When one “self” defects 

by opting for immediate gratification, the consequence can be a kind of 

unraveling or “falling off the wagon” whereby subsequent selves follow the 

precedent (Frederick, Loewenstein, and O’Donoghue, 2002). 
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5. Multi-agent decision problem: consensus and 

false consensus effect 

In a multi-agent decision problem an individual needs to take his 

intertemporal choice considering others’ preferences, to the purpose of 

achieving a consensus on a common decision. Group decision problems, indeed, 

consist in finding the best alternative(s) from a set of feasible alternatives 𝐴 =

{𝑎1, … , 𝑎𝑛} according to the preferences provided by a group of agents 𝐸 =

{𝑒1, … , 𝑒𝑚}. The objective is to obtain the maximum degree of agreement among 

the agents’ overall performance judgements on the alternatives. 

Once the alternatives have been evaluated, the main problem is to compare 

agents’ judgements to verify the consensus among them; in the case of 

unanimous consensus, the evaluation process ends with the selection of the best 

alternative(s). However, in real situations humans rarely come to a unanimous 

agreement: this has led to evaluate not only crisp degrees of consensus (degree 

1 for fully and unanimous agreement) but also intermediate degrees between 0 

and 1 corresponding to partial agreement among all agents. Furthermore, full 

consensus (degree = 1) can be considered not necessarily as a result of 

unanimous agreement, but it can be obtained ever in the case of agreement 

among a fuzzy majority of agents (Fedrizzi M, Kacprzyk J, Nurmi H., 

1992/1993). 

The judgements of each agent are frequently based, in part, on intuition or 

subjective beliefs, rather than detailed data on the preferences of the people 

being predicted. Such intuitive judgements become more pervasive judgements 

when people lack necessary data to base their judgements. 

Research in others areas of social judgement has revealed that people are 

egocentric: they judge others in the same way that they judge themselves. 

Consequently, as pointed out in several experiments, each decision maker 

overestimates his own opinion. Social psychology has founded that people with 

a certain preference tend to make higher judgements of the popularity of that 

preference in others, compared to the judgements of those with different 

preferences. This empirical result has been termed the false consensus effect 

(Ross et al., 1977; Mullen, et al., 1985). It states that individuals overestimate 

the number of the people who possess the same attributes as they do. People 

often believe that others are more like themselves than they really are. Thus, 

their predictions about others’ beliefs or behaviors, based on casual observation, 
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are very likely to err in the direction of their own beliefs or behavior. For 

example, college students who preferred brown bread estimated that over 50% 

of all other college students preferred brown bread, while white-bread eaters 

estimated that 37% showed brown bread preference (Ross et al., 1977). 

As the consequence, in multi-agent decision problem we often have to deal 

with different opinions, different importance of criteria and agents, who are not 

fully impartial objective. In this sense, the false consensus effect produces 

partial objectivity and incomplete impartiality, which perturbs the agreements 

over the evaluation. 

 

6. Assessment of consensus and false consensus 

effect   

In the literature, different methods to compute a degree of a consensus in 

fuzzy environments have been defined, and some approaches have been 

proposed to measure consensus in the context of fuzzy preference relations 

(Fedrizzi, Kacprzyk, Nurmi, 1992-1993). But, as we have seen, the false 

consensus effect can lead to an absence of objectivity in the evaluation process. 

Indeed, there may be cases where an agent would not be able to objectively 

express any kind of preference degree between two or more of the available 

options caused by the presence of the false consensus effect. 

Then just a numerical indication seems not to be sufficient to synthesize the 

degree of consensus of agents. To put in evidence the lack of objectivity and, 

consequently, synthesized judgements, a description of the individual opinion 

should incorporate both the true knowledge generated agent opinion and the 

subjective component that produces false consensus outputs. The opinion of 

each agent is decomposed into two components: a vector, made of the ranking 

of the alternatives, built by means of a classical procedure, e.g., a hierarchical 

procedure, and a fuzzy component that represents the contribution of the false 

consensus effect, which we assume to be fuzzy in nature. This allows us to 

consider aggregation operators, such as OWA operators, useful when synthesis 

among fuzzy variables is to be built (Squillante and Ventre, 2010). 

The formal model considers the set 𝑁 of decision makers, the set 𝐴 of the 

alternatives, and the set 𝐶 of the criteria. Let any decision maker 𝐼 ∈ 𝑁 be able 

to assess the relevance of each criterion. Precisely, for every 𝑖, a function 

 

ℎ𝑖: 𝐶 → [0,1]    with     ∑ ℎ𝑖(𝑐) = 1𝑐∈𝐶  
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denoting the evaluation or weight that the decision maker assigns to the criterion 

𝑐, is defined. 

Furthermore, the function 

 

𝑔𝑖: 𝐴×𝐶 → [0,1] 

 

is defined, such that 𝑔𝑖(𝑎, 𝑐) is the value of the alternative 𝑎 with respect to the 

criterion 𝑐, in the perspective of 𝑖.  

Let 𝑛, 𝑝,and 𝑚 denote the (positive integer) numbers of the elements of the 

sets 𝑁, 𝐶, and 𝐴, respectively. The value ℎ𝑖(𝑐)𝑐∈𝐶 denotes the evaluation of the 

𝑝-tuple of the criteria by the decision maker 𝑖  and the value 𝑔𝑖(𝑐, 𝑎)𝑐∈𝐶,𝑎∈𝐴 

denotes the matrix 𝑝×𝑚 whose elements are the evaluations, made by 𝑖, of the 

alternatives with respect to each criterion in 𝐶. Function: 𝐴 → [0,1] , defined by 

 

(𝑓𝑖(𝑎))𝑎∈𝐴 = ℎ𝑖(𝑐)𝑐∈𝐶 ⋅ 𝑔𝑖(𝑐, 𝑎)𝑐∈𝐶,𝑎∈𝐴 

 

is the evaluation, made by 𝑖, of the alternative 𝑎 ∈ 𝐴. 

An Euclidean metric that acts between couples of decision makers 𝑖 and 𝑗, 

i.e., between individual rankings of alternatives, is defined by 

 

𝑑(𝑓𝑖, 𝑓𝑗) = √
1

ǀ𝐴ǀ
∑(𝑓𝑖(𝑎) − 𝑓𝑗(𝑎))2

𝑎∈𝐴

 

 

If the functions ℎ𝑖, 𝑔𝑖 range in [0, 1], then also 0 ≤ 𝑑(𝑓𝑖, 𝑓𝑗) ≤ 1. 

If we set 𝑑∗ = 𝑚𝑎𝑥{𝑑(𝑓𝑖 , 𝑓𝑗)ǀ𝑖, 𝑗 ∈ 𝑁}, then a degree of consensus 𝛿∗ can be 

defined as the complement to one of the maximum distance between two 

positions of the agents: 

 

𝛿∗ = 1 − 𝛿∗ = 1 − 𝑚𝑎𝑥{𝑑(𝑓𝑖, 𝑓𝑗)ǀ𝑖, 𝑗 ∈ 𝑁}. 

 

Now to identify the portion of the false consensus effect internal to the 

consensus-reaching process we have to consider a vector that represents the 

components of the consensus = 𝑝(𝑎)𝑃 + 𝑞(𝑎)𝑄 . This polynomial 

representation of the measure of the effect is composed by a numeric component 
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𝑝(𝑎)𝑃  that contains all quantitative information available derived from the 

consensus-reaching process, and 𝑞(𝑎)𝑄 that reflects the false consensus effect. 

Then the measure of the effect is: 

 

𝑞(𝑎) =
1

𝑁(𝑑∗)2
∑(𝑓𝑖 − 𝑓𝑗)2

𝑁

𝑖=1

 

 

with    0 ≤ 𝑞(𝑎) ≤ 1, ∀𝑖, 𝑗 ∈ 𝑁 . 

 

This component can be estimate with OWA operators (a large class of 

decision support tools for providing heuristic solution to situations where 

several trade-offs should be taken into consideration). In Yager (1988) is 

introduced an approach for multiple criteria aggregation, based on ordered 

weighted averaging (OWA) operators. By ranking the alternatives, the operators 

provide an enhanced methodology for evaluating actions on a qualitative basis. 

 

7. False consensus effect and intertemporal choice 

in a multi-agent context 

Many decisions are made in condition of strategic interaction, i.e. situations 

in which consequences of our choices depend on decisions of others interactive. 

For example, in bidding in auctions or in a bargaining the choice depends not 

only on one’s evaluation of the good but also on the evaluation of other 

individuals.  

Mathematical instrument used to describe these situations is the theory of 

games. Indeed, a strategic game is considered as an interactive situation where 

two or more rivals interact and try to obtain an advantage from this 

interdependence. 

In this perspective, the theory of games can be considered as a tool for 

understanding and forecasting the decision-making processes; according to this 

theory the outcome of the game coincides with the decision of equilibrium, it 

occurs when each agent adopts the best strategy, which is the one selected on 

the basis of rational choice. 

Rationality is one of the most important assumptions made in theory of 

games. It implies that every player always maximizes his utility, thus being able 

to perfectly calculate the probabilistic result of every action. So they have 

http://www.gametheory.net/dictionary/Utility.html
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consistent preferences on the final outcome of the decision-making process and 

their aim is to maximize these preferences. 

However, first of all we have showed that intertemporal choices of each 

individual are influenced by impulsivity and show inconsistency; furthermore 

we have seen that in a group decision problem each individual tends to 

overestimate the extent to which other people share one’s beliefs, attitudes and 

behaviors. This means that in a strategic interaction people are not rationales; 

their choices are not solely a function of the objective response but of their 

subjective structure. The consequence is that in a strategic interaction, the 

equilibrium of the decision is the result of an internal process (which not reveals 

rationality). 

Rational choice and equilibrium decision coincide only if decision makers 

(alone or in group) succeed to fight loss of self-control and to keep out false 

consensus effect. So these psychological evidences involve new equilibriums in 

strategic games, which are not justified with rational behaviors.  

The consequences are different according to the nature of the interactions; 

indeed, in theory of games the basic classification of interactions is between 

non-cooperative games and cooperative ones, consequently we have non-

cooperative decision problems and cooperative decision problems too. The first 

group summarizes the dynamics by which each person pursues his own interests 

without regard to gains / losses of others. In the second group, subjects form a 

coalition and assume mutual commitments to share the surplus generated by 

cooperation. 

Psychological aspects of impulsivity and false consensus effect influence in 

different way these two kinds of interactions. A way to analyze these effects is 

to identify the portion of the false consensus effect in the equilibrium point 

(Section 6), and to consider influence of doers in each individual choice (Thaler 

and Shefrin, 1981). 

 

8. Cooperative decision problems 

In a cooperative game a group of players (coalitions) may enforce 

cooperative behavior; hence the game is a competition between coalitions of 

players, rather than between individual players. 

An example is a coordination game, when players choose the strategies by a 

consensus decision-making process. Indeed, coordination games are a class of 

games with multiple pure strategy Nash equilibria in which players choose the 

http://en.wikipedia.org/wiki/Coordination_game
http://en.wikipedia.org/wiki/Consensus_decision-making
http://en.wikipedia.org/wiki/Pure_strategy
http://en.wikipedia.org/wiki/Nash_equilibrium
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same or corresponding strategies. The classic example of coordination game is 

the “battle-of-the sexes”, where an engaged couple must choose what to do in 

the evening: the man prefers to attend a baseball game and the women prefers 

to attend an opera. In term of utility the payoff for each strategy is: 

 

  Man 

  Opera (O) Baseball (B) 

W
o

m
an

 

Opera (O) 3, 1 0, 0 

Baseball (B) 0, 0 1, 3 

 

In this example there are multiple outcomes that are equilibriums: (B,B) and 

(O,O). However both players would rather do something together than go to 

separate events, so no single individual has an incentive to deviate if others are 

conforming to an outcome: the man would attend the opera if he thinks the 

woman will be there even though he prefers the other equilibrium outcome in 

which both attend the baseball game. 

One of the most commonly suggested criteria for the analysis of games with 

multiple equilibria is to select the one with the highest payoffs for all, if such a 

“Paretodominant” outcome exists.  

In this context, a consensus decision-making process can be considered as an 

instrument to choose the best strategy in a coordination game. The final decision 

is often not the first preference of each individual in the group and they may not 

even like the final result. But it is a decision to which they all consent because 

it is the best for the group. 

If we follow the Thaler and Shefrin’s model, we can analyze choices in a 

cooperative game in this way: at period-one the planner of each agent states his 

preference, which is the best strategy because the planner wants maximize his 

utility function; indeed planners are rational part of each player. 

However, the period-one doers of each agent want obtain an immediate 

gratification, so they drive each agent to act differently from rational program 

of own planner, thinking that the others make the same by effect of false 

consensus. But each agent have a different utility function, so each one will 

select a different choice with degree = 1, and this make impossible the 

aggregation of the preferences with OWA operators to obtain a common 

decision. In fact according the model to measure consensus proposed in Section 

http://en.wikipedia.org/wiki/Bijection
http://en.wikipedia.org/wiki/Strategy
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6 a certain consensus degree 𝛿 ∈ (0,1] is required in advance, consensus is 

reached if the constraint 𝛿∗ ≥ 𝛿 is satisfied.  

Nevertheless, in cooperative decision problem, the influence of doers can be 

avoid, indeed agents can enforce contracts through parties at period-one, which 

eliminates the problem of loss of self-control, because it eliminates all choices. 

As a consequence the consensus is obtained with the aggregation of 

preferences of each planner. The planners are rationales, so the final common 

choice is the best strategy according to the theory of games. However, the result 

of this aggregation includes a part of the coefficient called the false consensus 

effect that depends on the subjectivity and also increases the degree of the 

opinions (Squillante and Ventre, 2010): with cooperation the group utility is 

higher than real utility of each one derived from strategy chosen. So they have 

to extract from the degree of consensus the measure of false consensus effect 

according the model analyzed in Section 6. 

This means that at the best solution corresponds an improvement in terms of 

utility that is overrated as a result of the false consensus.  

Then in a cooperative decision problem the influence of false consensus 

effect is present at period-one, while the loss of self-control of each agent is 

fought by the imposition of a rule (Thaler and Shefrin, 1981). The rationality of 

the equilibrium choice of the game is saved by the possibility of making an 

arrangement among agents, which represents a pure rule to control the behavior 

of the doers and maintain self-control at later time (Section 4); nevertheless the 

final decision has a higher consensus degree because it is influenced by the false 

consensus effect. However this effect acts only on planners, so we can eliminate 

it in planners’ utility functions: the false consensus effect directly influence the 

discount function of each agent. 

For example, consider two person who live together and put in common a 

part of their monthly income to do the common expenses, this part of each salary 

form a fixed income stream 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑇], where 

 

 ∑ 𝑦𝑡 = 𝑌𝑡  

 

which has to be allocated over the finite interval (0, T). 

The two agents must agree on how to spend this money. We can eliminate 

the influence of the doers because both are obliged to deposit in common fund 

a fixed amount of money, and also because they made the plan of consumption 

of common expenses at period-one, so they can not use this money for other 

http://en.wikipedia.org/wiki/Contract


M. Olivieri, M. Squillante, V. Ventre 
 

18 

 

purpose. In this way we can take into account only each planner and get the 

consensus about the common choice through the process of evaluation of a 

multi-agent decision problem.  

The planner’s preferences are represented by a utility 

function  𝑉(𝑍1, 𝑍2, … , 𝑍𝑇) , in which such 𝑍𝑡  is a function of utility of level 

consumption in t (𝑐𝑡). Then the planner would choose a consumption common 

plan to maximize 𝑉(𝑍1, 𝑍2, … , 𝑍𝑇), subject to their fixed income stream 

 

   ∑ 𝑐𝑡 ≤ 𝑌𝑡
𝑡=1 . 

 

The consumption plan chosen by each agent will provide different degrees 

of preference for different types of consumption according to their preferences, 

then to reach an agreement it simply suffices aggregate the preferences of each 

planner (Section 6). 

However, the consensual choice obtained will have a greater degree due to 

the false consensus effect established in the preferences of each planner. 

So the utility function of each planner may be released in advance of the false 

consensus effect by reducing the degree of preference of favorite choices.  

The function to maximize will always be 𝑉(𝑍1, 𝑍2, … , 𝑍𝑇), but each Z will 

represent a degree of utility lower for each type of preferred consume. 

This example can be analyzed according to the theory of repeated games. The 

choice of “what we consume with the common fund” can be seen as a choice 

that is repeated over time. The repeated games study the repetition of the 

strategic choices over time. 

According to the theory of games, if in a repeated game, finitely or infinitely, 

there are multiple Nash equilibria, then there are many subgame perfect 

equilibria. Some of these involve the play of strategies that are collectively more 

profitable for players than the one-shot game Nash equilibria. The economic 

reasoning that supports this balance is as follows: the players will agree to 

maximize their utility in the first period, while the actions to be taken in the 

second period are of two types: a punishment if the rival does not maintain the 

agreement and a prize (the best Nash equilibrium of the single game) if it is fair. 

In this case the strategies take into account the history of the game, which makes 

possible the cooperation. When the agents interact only once, they often have 

an incentive to deviate from cooperation, but in a repeated interaction, any 

mutually beneficial outcome can be sustained in an equilibrium. The deviation 
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is not convenient in the long run, since players can make retaliation and this 

operates especially when the game is repeated infinitely. 

According to our theory, the end result is the same: repeating a cooperative 

game make possible to obtain a common result which is not achievable in a one-

period situation (see the battle of the sexes). However, this happens not because 

the rational player has more convenience to cooperate in the long run, but 

because through the agreements made at first period they eliminate any 

temptation to deviate, which is then made impossible. It is necessary set the 

impossibility to divert, otherwise, in later games, the doer of each player push 

his agent to deviate, also believing that the others will do the same as a result of 

the false consensus. 

 

9. Non-cooperative decision problems 

In non-cooperative games, also called competitive games, players can not 

stipulate binding agreements, regardless of their goals. So in a non-cooperative 

decision problem each agent makes decisions independently, without 

collaboration or communication with any of the others (J. Nash, 1951), an 

example is the daily trading on the stock exchange. In this category the solution 

is given by Nash Equilibrium. 

Consequently in this kind of interaction is not possible to implement some 

pre-commitment to control the doer’s actions, as a consequence is not possible 

recognize the best choice on a rational base.  

If we analyze a non-cooperative multi-agent decision problem like the 

traditional prisoner’s dilemma, on one temporal interval and with only two 

alternatives, we see that the agents achieve common decision, and this is the best 

strategy, because each doer wants obtain the higher advantage which is the same 

and, for the false consensus effect, each one thinks that other make the same. 

The doer of each prisoner will choose the strategy of “do not confess”. 

In the traditional version of the game, the police arrest two suspects (A and 

B) and interrogate them in separate rooms. Each can either confess, thereby 

implicating the other, or keep silent. In terms of years in prison the payoff for 

each strategy are these: 
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  Agent A 

  Confess (C) Do not confess (NC) 

A
g

en
t 

B
 

Confess (C) 5, 5 0, 10 

Do not confess (NC) 10, 0 1, 1 

 

According to the theory of games, given this set of payoffs, there is a strong 

tendency for each to confess. If prisoner A remains silent, prisoner B is better 

off confessing (because 0 is better than 1 year in jail). However, B is also better 

off confessing if A confesses (because 5 years is better than 10). Hence, B will 

tend to confess regardless of what A will do; and by an identical argument, A 

will also tend to confess. 

This line of reasoning implies two rational players with consistent 

preferences. Actually, when each player has to choose the best strategy every 

doer drives his agent to make decision that leads him a greater advantage, 

believing that the other will do the same due to the effect of the false consensus. 

Consequently, the decision made by each leads to optimal decision in terms 

of Pareto, because both have the same utility function and both doers choose the 

only action that is the best strategy. This creates the paradoxical situation that 

rational players lead to a poorer outcome than irrational players. 

However, it is just a coincidence that the two players have achieved a 

common strategy. 

In other types of non-cooperative problems this can not happen, with the 

result that you will never achieve a joint decision without a prior agreement. 

Consider, for example, a multi-agent decision problem in which the agents 

set to save money to realize a common purchase. Even agent has a fixed income,  

𝑌𝐴 and 𝑌𝐵, and a nonnegative level of saving, 𝑆𝐴 and 𝑆𝐵. 

As in cooperative games, the planner of each agent choose the best strategy 

which maximize his function utility of saving (thinking for future), but the doer 

of each agent want obtain the highest advantage now, so it would consume 𝑌 

and therefore choose = 0 , with a degree =1. Indeed, the doers are impulsives, 

each one assigns weight=1 at one preference and weight=0 at all the others, 

thinking that everybody will make in the same way for effect of false consensus. 

In this case, as we see in cooperative game, is not possible to aggregate the 

preferences to obtain a common decision. 
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The plan made in advance by group of agent (to realize a common purchase) 

is not feasible if they don’t set some rule or some method to alter the incentives 

for the doers. 

This type of problem can be represented in the following way: 

 

  Agent A 

  Save (S) Do not save (NS) 

A
g

en
t 

B
 

Save (S) 10, 10 5, 5 

Do not save (NS) 5, 5 -10, -10 

 

where the payoff represent the utility of each agent for each strategy. 

According rational choice we note the Nash equilibrium coincides with the 

best strategy (S,S). However false consensus effect and impulsivity lead each 

agent to the worst equilibrium, because utility functions of the agents are 

different among them (each agent prefers consumptions to savings). This causes 

the lack of consensus on a common decision. 

In conclusion, in a non-cooperative multi-agent decision problem, there are 

two situations: 1) the doers of each agent have the same preference and they will 

reach a common decision that is given by the unanimous choice, 2) the doers 

have different preferences and do not assign any weight to the other preferences, 

so it is not possible to aggregate the preferences. Then the influence of doers 

don’t affect if their choices are unanimous, and in this case the final decision 

will be also the best decision in term of Pareto, but if this does not happen is 

impossible to achieve a common strategy without arresting impulsivity, and 

when the number of agents increases unanimity becomes increasingly difficult 

to obtain. 

Analyzing this type of decision problem in long time, we note that the 

influence of the psychological aspects leads to the same conclusion of the theory 

of games, namely the impossibility of obtaining cooperation over time, but in a 

different way: according to the theory of games because the dominant strategy 

prevails, according to our analysis because the doers will divert to their 

preferences. 

Indeed, according to the theory of games a repeated game with a unique Nash 

equilibrium has the same subgame perfect equilibrium outcome, because in the 

last stage the strategy which will be played by each player does not depend on 

the history of the game, that is the strategies of the last stage of game are history 
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independent: every player in last round probably choose the equilibrium of 

dominant strategy so he betray (playing the last time is like playing a single 

time). Thus, in finitely repeated games, if you fail to cooperate in the last game 

you can not do in any other round. 

However analyzing the situation according our theory we obtain the same 

conclusion but for different causes. We can reconsider the example of the two 

agents who save for common expenses, and continue the game for several years: 

in the same way, in subsequent periods, the doer of each agent will push to 

consume all what he has saved. 

If we consider two periods, at the first the payoffs are the same, in the second 

they are the sum: 

  Agent A 

  Save (S) Do not save (NS) 

A
g

en
t 

B
 

Save (S) 20, 20 10, 10 

Do not save (NS) 10, 10 -20, -20 

 

The doers of the second period will want to consume everything and choose 

𝑆2 = 0, with the result that is not possible achieve the plan and the equilibrium 

is the worst solution (NS,NS). The planners will establish a consumption plan 

by discounting the expected future payoff and so smearing the savings over the 

years, but in every period the doers will deviate their agents for the temptation 

to consume everything today and save tomorrow, this impulsiveness is 

psychologically justified by the effect of the false consensus. 

In conclusion, even in the long time psychological influence of the doers can 

not lead to cooperation and to achievement of rational results. 

We can affirm that in a non-cooperative decision problem is only a chance 

obtaining a common decision. 
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Abstract  

Derivatives are products of different nature which are becoming 

increasingly common in financial markets. In certain cases, 

determining the assessment criteria can sometimes be a difficult 

task. Specifically, this paper focuses on one type of exotic option: 

the barrier option. This option has to satisfy some conceptual 

conditions which are specified at the time of its purchase and define 

its characteristics. In order to analyze this type of option more 

deeply, in this paper we choose a specific one, the so-called barrier 

option cap, whose value is going to be derived by the binomial 

pricing model. 

 

Keywords: barrier options; exotic options; barrier option cap; 

binomial model. 
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1. Introduction 

In the last years, the interest rate has reached historic low levels. As a 

consequence, the investment habits have changed and investors are interested in 

new and more profitable products. For this reason, derivatives have been 

selected as an alternative to traditional investment products. These are financial 

products whose price does not only vary according to parameters such as risk, 

but also depends on the market price of another asset, called the underlying asset 

(stock, foreign exchange, stock market index, etc.) (Carr, 1998). The option 

holder is committed to the evolution, up or down, of a certain underlying asset 

in the securities market. There are different products: options, warrant, futures, 

etc. The main difference is the way in which the price is derived and the nature 

of the transaction to which this instrument gives rise, that is to say, how and 

when the delivery of the asset takes place. 

A derivative is a forward contract whose characteristics are established at the 

agreement moment, whilst the money exchange occurs at a future moment. 

Derivatives, like financial options, are products with higher profits since the 

premium is lower than the corresponding to the underlying asset, whereby the 

results can be multiplied, either in the positive or negative sense, in relation to 

the premium. Hence they are highly risky products. In order to make them more 

attractive, exotics options, specifically the barrier option, arise in order to allow 

taking more control of the operational risk by employing covertures. 

Barrier options are very popular but there is a scarce economic research given 

its novelty and complexity (Rich, 1994). We start with an analysis of the product 

from a theoretical point of view and by studying the analogies and differences 

of this type of exotic options with financial standard options (plain vanilla). 

They are options whose exercise will depend on whether the underlying asset 

reaches a pre-set barrier level during a certain period of time. If this occurs, the 

conditional option becomes a simple call or put option (knock-in options) or, on 

the other hand, it may cease to exist from the moment that the barrier level is 

reached (knock-out options). 

Once this financial product has been introduced as an alternative to traditional 

investment products, we present this paper organization. In Section 2, barrier 

options are described and studied from a mathematical point of view. In Section 

3, we focus on the barrier option cap which is a specific barrier option. Then, in 

Section 4, the financial analysis to derive the value of this type of financial 

option is presented. Finally, Section 5 summarizes and concludes. 

 

 

 



Valuation of Barrier Options with the Binomial Pricing Model 

27 

 

2. Barrier options 

Barrier options are derivatives which can be canceled or activated depending on 

the prices reached by the corresponding underlying asset (Soltes and 

Rusnakova, 2013). They are available for a predetermined period of time if, 

during this period, the underlying asset reaches a certain level, the conditional 

option is converted from that moment into a simple option (knock-in options) 

or, in another case, if the option already exists, it is canceled from that moment 

(knock-out options). 

These options are similar to a call or a put option with a specified barrier (called 

B). It ensures that the option has a fixed value (called L) if the maximum or 

minimum of the underlying asset price (called S) do not touch the barrier 

(Rubinstein and Reiner, 1991). Below the different types of barrier options are 

explained. 

 

2.1. Knock-in options 

These options only arise if the underlying asset price reaches a certain level, 

known as barrier level (Fernández, 1996). They can be classified into two types: 

 

1) Up-and-in options: The right to exercise the option is activated when the 

underlying asset price is above a certain level (B) during the option’s life. Its 

price at maturity, if the strike price is denoted by K, is: 

 

 

 

-Call up-and-in option 

 

 

 

 

-Put up-and-in option 

 

 

 

 

2) Down-and-in options: The right to exercise the option at maturity appears if 

the underlying asset price falls below the pre-determined barrier (B). In this way, 

we can distinguish between: 
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-Call down-and-in option 

 

 

 

 

-Put down-and-in option 

 

 

 

 

2.2. Knock-out options 

These options only may be exercised if the underlying asset price does not reach 

the barrier, that is to say, the right to be exercised disappears if the underlying 

asset price intersects the barrier at any time of the option’s life; at this moment, 

the option acquires a fix price (L) (Fernández, 1996). They can be classified into 

two types: 

1) Up-and-out options: They only make sense if the underlying asset price is 

above a pre-determined value during the option’s life: 

 

 

 

-Call up-and-out option 

 

 

 

 

-Put up-and-out option 

 

 

 

 

 

2) Down-and-out options: The right to exercise the option disappears if the 

underlying asset price is below the level established by the barrier. 
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-Call down-and-out option 

 

 

 

 

 

 

 

-Put down-and-out option 

 

 

 

 

There is another type of option called “double barrier option” which disappears 

if the underlying asset does not stay within a certain interval (Kunitomo and 

Ikeda, 1992 and Fernández and Somalo, 2006). 

The main advantage of using barrier options is its lower price, compared to a 

vanilla equivalent option. The saving of using barrier options versus simple 

options depends on:  

-The proximity of the barrier to the current price of the underlying asset (with 

greater proximity to savings of the “out” type) and, conversely, to greater 

distance (in the “in” type). 

-The option’s life (the longer the time to maturity, the greater the probability 

of reaching the barrier and therefore the greater the savings in the “out” and 

inversely in the “in” type). 

-The greater the volatility (greater probability of touching the barrier and, 

therefore, greater savings in the “out” type, and inversely in the “in” type). 

Barrier options can be very useful in hedging commodities providing protection 

at a lower price than traditional options for coverage of risks (Crespo, 2001). 

 

 

3. Barrier option cap 

In this section, we are going to study a specific barrier option, the so-called 

barrier option cap. It guarantees a certain profitability called “option level” at 

maturity, i.e. it guarantees a final sale price independently of the share price, 

with the only condition that during the option’s life the underlying asset does 

not reach a certain lower level, called the “barrier”. This product was issue by 

PNB Paribas Bank in Spain with the name “bonus cap”. It has been marketed 

for a short time since they were first issued in Spain on June 16, 2010. 
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The barrier and option level are given by the issuer bank and they are known 

from the beginning, that is to say, from the issue date and during the barrier 

option cap life. 

In case that the underlying asset reaches the barrier, this does not imply that the 

option disappears but simply loses the guaranteed price at maturity (the “option 

level”), for which the barrier option cap will continue being traded with 

normality being able to give profits if the share has an upward tendency which 

allows the holder to sell above the level of purchase. 

The barrier option cap profit is limited to the “option level” so it should be 

clarified that in case that the underlying asset quotes above the “option level” at 

maturity, the holder will receive at most the profitability previously fixed 

corresponding to the “option level”. On the other hand, if the barrier option cap 

reaches the “option level” before maturity, the holder can get rid of his/her 

investment since it does not make sense to keep the investment when the highest 

allowed profitability has been already achieved. In this way, we would have 

achieved the maximum expected return without waiting to maturity. 

Therefore, it can be said that the barrier option cap limits the profits which can 

be obtained, in exchange for ensuring a known profit provided that the 

underlying asset price is higher than the barrier value. 

 

3.1. Analogies and differences of barrier options 

cap with other derivatives 

-A future contract is an agreement whereby two persons (physical or legal) 

undertake to sell and to buy, respectively, an asset, called the underlying 

asset, at a price and at a future date according to the conditions fixed in 

advance by both parties. 

However, the holder of a barrier option cap will never be the owner of the 

underlying asset; he/she will receive the cash corresponding to the price of 

the underlying asset. 

The future is a compromise, whilst the purchase of a barrier option cap is an 

option to buy. 

-An option is an agreement granting the buyer, in return for payment of a 

price (premium), the right (not the obligation) to buy or sell an underlying 

asset at a price (strike price) and at a future date, in accordance with the 

conditions set forth in advance by both parties. 

As for the sale of the barrier option cap, it is a liquid product and can be sold 

at any time, so we could say that it keeps more similarities with the American 

options since it is not necessary to wait for the expiration to exercise the sale. 

Barrier options cap present the following differences with respect to other 

derivative products which make them a new banking product: 
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-They present a well-known and bounded return from the moment of 

contracting, as long as the underlying asset does not reach the barrier during 

the life of the barrier option cap. 

-The underlying asset is not acquired at any time. 

-At maturity, the option owner will receive in cash the traded price of the 

underlying asset in case it reaches the barrier and never exceeding the “option 

level”. 

-It is not necessary to wait until maturity to obtain liquidity. 

 

 

4. Assessment of a barrier option cap 

The methodology we are going to use in this paper is the binomial model, 

introduced by Cox, Ross and Rubinstein (1973) to value financial options. It is 

a discrete-time model based on the binomial tree, with different possible 

trajectories. A barrier option cap is a derivative over an underlying asset (usually 

a share) which is defined by the following elements: 

- B: barrier. 

- L: option level. 

- kS : price of the underlying asset at moment k (k = 1, 2, , n). 

The possible performances of the barrier option cap are the following ones:  

-If, at any time, the underlying asset is traded between the barrier and the 

option level, the barrier option cap guarantees the payment of the option 

level. 

 

Figure 1. Underlying asset between the barrier and the option level. 

 
Source: Own elaboration from BNP Paribas Bank data. 
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-If, at any moment, the underlying asset quotes above the option level, the 

option can be sold at that time obtaining, in advance, the maximum amount 

that could be reached with the option, i.e. the option level. 

 

 

Figure 2. Underlying asset above option level. 

 
Source: Own elaboration from BNP Paribas Bank data. 

 

-If, at maturity, the asset quotes below the pre-set barrier level, the holder 

of the option will receive at maturity the price of the share at that time, with 

limit the level of the option. 

 

Figure 3. Underlying asset below the barrier level. 

 
Source: Own elaboration from BNP Paribas Bank data. 
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Taking into account the given definition of the barrier option cap, the option 

price P at moment 0 is given by the mathematical expectation of the following 

random variable (BOC) that represents the possible values of the option at that 

instant: 
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where fr  is the risk-free interest rate. Therefore, ][BOCEP  . 

In Figure 4, we are going to describe a methodology to calculate the price of a 

barrier option cap assuming that the underlying asset follows a binomial process 

with a rising factor u and a downward factor d, starting from the price volatility 

of the underlying asset at time 0 )( 0S . To do this, we start from an example in 

which the option maturity is after five periods. 

 

 

In this case, the value of the barrier option cap is: 
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As previously indicated, ][BOCEP  . 

5. Conclusions 

Taken into account the wide offer of financial products with different risks, 

profitability and liquidity, an accurate analysis of their characteristics and real 

values is completely necessary. 

Despite barrier options increase the covertures of risks, they are cheaper than 

the equivalent standard option. Specifically, a barrier option cap is a derivative 

with a given profitability provided that a certain condition is satisfied. In this 

way, a barrier option cap limits the benefit which can be obtained, in exchange 

of ensuring a known profit (the option level) if the price of the underlying asset 
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is higher than the barrier value. So, this paper aims to analyze the assessment of 

this option by employing the binomial options pricing model. 

 

Figure 4: Value of the barrier option cap within 5 periods (Instants). 
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Abstract 

We implement an algorithm that uses a system of max-min fuzzy relation 

equations (SFRE) for solving a problem of spatial analysis. We integrate 

this algorithm in a Geographical Information Systems (GIS) tool. We 

apply our process to determine the symptoms after that an expert sets the 

SFRE with the values of the impact coefficients related to some 

parameters of a geographic zone under study. We also define an index of 

evaluation about the reliability of the results.  

Keywords: Fuzzy relation equation, max-min composition, GIS, 

triangular fuzzy number 

2010 AMS subject classification: 03E72, 94D05. 
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1. Introduction 

A Geographical Information System (GIS) is used as a support decision system 

for problems in a spatial domain. We use a GIS to analyse spatial distribution of 

data, the impact of event data on spatial areas: this analysis implies the creation 

of geographic thematic maps. Several authors (cfr., e. g., [3], [4], [7], [8], [25]) 

solve spatial problems using fuzzy relational calculus. In this paper, we propose 

an inferential method to solve such problems based on an algorithm for the 

resolution of a system of fuzzy relation equations (shortly, SFRE) given in [20] 

(cfr. also [21], [22]) and applied in [10] to solve industrial application problems. 

Here we integrate this algorithm in the context of a GIS architecture. Usually a 

SFRE with max-min composition is read as  

                                   



















mnmnm

nn

nn

bxaxa

bxaxa

bxaxa

)(...)(

...

)(...)(

)(...)(

11

22121

11111

                                   (1) 

The system (1) is said consistent if it has solutions. Sanchez [23] determines its 

greatest solution, moreover many researchers have found algorithms which 

determine minimal solutions of (1) (cfr., e. g., [1], [2], [5], [6], [9], [11]÷[24], 

[26]).  In [20] and [21] a method is described for the consistence of the system 

(1).  

This method has been applied in this paper to real spatial problem in which the 

input data vary for each subzone of the geographical area. The expert starts from 

a valuation of input data and he uses linguistic labels for the determination of 

the output results for each subzone. The input data are the facts or symptoms, 

the parameters to be determined are the causes. For example, let us consider a 

planning problem. A city planner needs to determine in each subzone the mean 

state of buildings (x1) and the mean soil permeability (x2), knowing the number 

of collapsed building in the last year (b1) and the number of flooding in the last 

year (b2). The expert creates the SFRE (1) for each subzone by setting the impact 

matrix A, whose entries aij (i=1,…,n and j=1,…,m) represent the impact of the 

j-th cause xj to the production of the i-th symptom bi, where the value of  bi is 

the membership degree in the corresponding fuzzy set and let B=[b1,…,bm]. In 

another subzone, the input data vector B and the matrix A can vary.  
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Fig. 1.  Resolution process of a SFRE 

 

The process of the resolution of the system (1) is schematized in Fig. 1. We can 

determine the maximal interval solutions of (1). Each maximal interval solution 

is an interval whose extremes are the values taken from a lower solution and 

from the greatest solution. Every value xi belongs to this interval. If the SFRE 

(1) is inconsistent,  it is possible to determine the rows for which no solution is 

permitted. If the expert decides to exclude the row for which no solution is 

permitted, he considers that the symptom bi (for that row) is not relevant to its 

analysis and it is not taken into account. Otherwise, the expert can modify the 

setting of the coefficients of the matrix A to verify if the new system has some 

solution. In general, the SFRE (1) has T maximal interval solutions 

Xmax(1),…,Xmax(T). In order to describe the extraction process of the solutions, let 

Xmax(t), t{1,…,T}, be a maximal interval solution given below, where Xlow is 

a lower solution and Xgr is the greatest solution. Our aim is to assign the 

linguistic label of the most appropriate fuzzy sets, usually triangular fuzzy 

numbers (briefly, TFN), corresponding to the unknown {
sjjj xxx ,...,,

11
} related 

to an output variable os, s = 1,…,k. For example, assuming that INF(j), 

MEAN(j), SUP(j) are the three fundamental values of the generic TFN xj , j=j1, 

…, js, respectively, we can write their membership functions 
hjjj  ,...,,

21
 as 

follows: 
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If XMint(j) (resp. XMaxt(j)) is the min (resp., max) value of every interval 

corresponding to the unknown xj, we can calculate the arithmetical mean value     

 XMeant(j) of the j-th component of the above maximal interval solution Xmax(t) 

as 

                                
2

)()(
)(

jXMaxjXMin
jXMean tt

t


                                          (5) 

 

and we get the vector column XMeant = [XMeant(1),…, XMeant(n)]-1. The value 

given from max{XMeant(j1),…,XMeant(js)} obtained for the unknowns 

sj
x,...,x

1j
 corresponding to the output variable os, is the linguistic label of the 

fuzzy set assigned to os and it is denoted by scoret(os), defined also as reliability 

of os in the interval solution t. For the output vector O = [o1,…,ok], we define 

the following reliability index in the interval solution t as 
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and then as final reliability index of O, the number 

Rel(O)=max{Relt(O):t=1,…,T}. 

The reliability of our solution is higher, the more the final reliability index 

Rel(O) close to 1 is. In Section 2 we give an overview of how finding the whole 

set of the solutions of a SFRE. In Section 3 we show how the proposed algorithm 

is applied in spatial analysis. Section 4 contains the results of our simulation and 

it is divided in five subsections.  

 

2. SFRE: An Overview 

The SFRE (1) is abbreviated in the following known form: 

                                                              A ○ X = B                                                       

where A = (aij), is the matrix of coefficients, X = (x1,  x2,…, xn)
-1 is  the column 

vector of the unknowns and B = (b1,b2,…,bm)-1
 is the column vector of the 

known terms, being aij, xj, bi  [0,1] for each i = 1,…,m and j = 1,…,n. We have 

the following definitions and terminologies: the whole set of all solutions X of 

the SFRE (1) is denoted by  . A solution X̂   is called a minimal solution 

if X ≤ X̂  for some X   implies X= X̂ , where “≤” is the partial order induced 

in   from the natural order of [0, 1]. We also recall that the system (1) has the 

unique greatest (or maximum) solution 1

21 ),...,,(  gr

n

grgrgr xxxX if  ≠Ø [23]. 

A matrix interval Xinterval  of the following type: 
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where [aj,bj] [0,1] for each j=1,…,n, is called an interval solution of the SFRE 

(1) if  every X=(x1,x2,…,xn)
-1 such that ],[ jjj bax   for each j = 1,…,n, belongs 

to  . If aj  is a membership value of a minimal solution and bj  is a membership 

value of Xgr for each j = 1,…,n, then Xinterval  is called a maximal interval solution 

of the SFRE (1) and it is denoted by Xmax(t) , where t varies from 1 till to the 
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number of minimal solutions. The SFRE (1) is said to be in normal form if 

b1≥b2≥…≥bm. The time computational complexity to reduce a SFRE in a normal 

form is polynomial [20, 22]. Now we consider the matrix )(   ijaA so defined: 
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where i = 1,…,m and j = 1,…,n, that is 


ija  is  S—type coefficient (Smaller) if 

aij<bi, E—type coefficient (Equal) if aij=bi and G—type coefficient (Greater) if 

aij>bi. 
A  is called augmented matrix and the system BXA    is said  

associated to the SFRE (1). Without loss of generality, from now on we suppose 

that the system (1) is in normal form. We also the following definitions and 

results from [16, 17, 20, 22]. 

Definition 1. Let SFRE (1) be consistent and  },...,{
1

 
mjjj

aaA . If 


j
A

contains G-type coefficients and k{1,…,m} is the greatest index of  row such 

that 1

kja ,  then  the following coefficients in 


j
A are called selected: 

- 


ija   for  i{1,…,k}  with kiij bba 
, 

- 


ija   for  i{k+1,…,m}  with iij ba 
. 

Definition 2. If 


j
A not contains G-type coefficients, but it contain E-type 

coefficients and r {1,…,m} is the smallest index of  row such that rrj ba 
,  

then  any  iij ba 
 in 



j
A  for  i{r,…,m} is called selected. 

Theorem 1.  Let us consider a  SFRE  (1). Then 

- The SFRE (1) is consistent if and only if  there exist at least one selected 

coefficient for each i-th equation, i=1,…,m. 

-  The complexity time function for determining the consistency of the SFRE 

(1) is O(m∙n). 

Consequently, when a SFRE (1) is inconsistent, the equations for which no 

element is a selected coefficient, could not be satisfied simultaneously with the 

other equations having at least one selected coefficient. Furthermore a vector 

IND=(IND(1),…,IND(m)) is defined by setting IND(i) equal to the number of 

selected coefficients in the ith equation for each i = l,...,m. If IND(i) = 0, then 
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all the coefficients in the ith equation are not selected  and the system is 

inconsistent. The system is consistent if IND(i) ≠ 0 if for each i = l,...,m and the 

product 

                                               



m

i

iINDPN
1

)(2                                            

gives the upper bound of the number of the eventual minimal solutions. 

Theorem 2.  Let SFRE (1) be consistent. Then 

- the SFRE has an unique greatest solution Xgr   with component  k

gr

j bx  if the 

jth column  


j
A  contains selected G-type coefficients 



kja  and 1gr

jx  

otherwise.  

- The complexity time function for computing Xgr is O(m∙n). 

A help matrix H=[hij], i = 1,…,m and j = 1,…,n, is defined as follows: 

                                             










otherwise   0

selected is a if  iji

ij

b
h                                          

Let |Hi| be the number of coefficients hij in the ith equation of the SFRE (1).  

Then the number of potential minimal solutions cannot exceed the value 

                                                         



m

i

iHPN
1

1   

and one has 12 PNPN  . 

Definition 3. Let ),...,,( 21 iniii hhhh  and ),...,,( 21 knkkk hhhh  be the ith and the 

kth rows of the matrix H. If for each j=1,…n,  0ijh  implies both 0kjh and 

ijkj hh  , then the ith row (resp. equation) is said dominant over the kth row in 

H (resp. equation) or that the kth row (resp. equation) is said dominated by the 

ith row (resp. equation). 

If the ith equation is dominant over the kth equation in (1), then the kth equation 

is a redundant equation of the system. By using Definition 3, we can build a 

matrix of dimension m×n, called dominance matrix H*, having components: 

                      
otherwise   

equationanother  by    dominated  is equation  ith    theif  0
*






ij

ij
h

h      
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For each i= 1, ...,m, now we set | 

iH | as the number of coefficients 0

iij bh  

in the ith row of the dominance matrix H*. When this value is 0, we set | 

iH | = 

1. Then the number of potential minimal solutions of the SFRE cannot exceed 

the value  

                                                     



m

i

iHPN
1

*3    

being 123 PNPNPN   [17, 20 ,22]. There the authors use the symbol 
j

bi  to 

indicate the coefficients 0

iij bh . We have ijij bxh 
 if ]1,[ ij bx   and 

ij bx   is the jth component of a minimal solution. A solution of the ith equation 

can be written as 

                                                           



n

j

i
i

j

b
H

1

  

In [20,22] the concept of concatenation W is introduced to determine all the 

components of the minimal solutions and it is given by 

                                                
 
















m

i

n

j

i
m

i

i
j

b
HW

1 11

  

We can determine the minimal solutions 
1)()(

2

)(

1

)( ),...,,(  tlow

n

tlowtlowtlow xxxX , 

t )}3(,...,1{ PN , with components  

                                               
otherwise   0

 0b if  b
tt ii)(



 

tlow

jx   

In order to determine if a SFRE is consistent, hence its greatest solution and 

minimal solutions, we have used the universal algorithm of [20,22] based on the 

above concepts. For brevity of presentation, here we do not give this algorithm 

which has been implemented and tested under C++ language. The C++ library 

has been integrated in the ESRI ArcObject Library of the tool ArcGIS 9.3 for a 

problem of spatial analysis illustrated in the next Section 3.  

 

3. SFRE in Spatial Analysis 

We consider a specific area of study on the geographical map on which we have 

a spatial data set of “causes” and we want to analyse the possible “symptoms”. 
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We divide this area in P subzones where a subzone is an area in which the same 

symptoms are derived by input data or facts, and the impact of a symptom on a 

cause is the same one as well.  It is important to note that even if two subzones 

have the same input data, they can have different impact degrees of symptoms 

on the causes. For example, the cause that measures the occurrence of floods 

may be due with different degree of importance to the presence of low porous 

soils or to areas subjected to continuous rains. Afterwards the area of study is 

divided in homogeneous subzones, hence the expert creates a fuzzy partition for 

the domain of each input variable and he determines the values of the symptoms 

bi, as the membership degrees of the corresponding fuzzy sets (cfr., input 

fuzzification process of Fig. 1) for each subzone on which the expert sets the 

most significant equations and the values aij of impact of the j-th cause to the i-

th symptom. After the determination of the set of maximal interval solutions, 

the expert for each interval solution calculates, for each unknown xj, the mean 

interval solution Xmean(t) with (5). The linguistic label Relt(os) is assigned to the 

output variable os . Then he calculates the reliability index Relt(O), given from 

formula (6), associated to this maximal interval solution t. After the iteration of 

this step, the expert determines the reliability index (6) for each maximal 

interval solution, by choosing the output vector O for which Rel(O) assumes the 

maximum value. Iterating the process for all the subzones (cfr., Fig. 2), the 

expert can show the thematic map of each output variable.  If the SFRE related 

to a specific subzone is inconsistent, the expert can decide whether or not 

eliminate rows to find solutions: in the first case, he decides that the symptoms 

associated to the rows that make the system inconsistent are not considered and 

eliminates them, so reducing the number of the equations. In the second case, 

he decides that the corresponding output variable for this subzone remain 

unknown and it is classified as unknown on the map.  

 

4. Simulation Results 

Here we show the results of an experiment in which we apply our method to 

census statistical data agglomerated on four districts of the east zone of Naples 

(Italy). We use the year 2000 census data provided by the ISTAT (Istituto 

Nazionale di Statistica). These data contain informations on population, 

buildings, housing, family, employment work for each census zone of Naples.  

Every district is considered as a subzone with homogeneous input data given in 

Table 2.  

In this experiment, we consider the following four output variables: “o1 = 

Economic prosperity” (wealth and prosperity of citizens), “o2 = Transition into 

the job” (ease of finding work), “o3 = Social Environment” (cultural levels of 
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citizens) and “o4 = Housing development” (presence of building and residential 

dwellings of new construction). For each variable, we create a fuzzy partition 

composed by three TFNs called “low”, “mean” and “high” presented in Table 

1.  

Moreover, we consider the following seven input parameters: i1=percentage of 

people employed=number of people employed/total work force, i2=percentage 

of women employed=number of women employed/number of people employed, 

 

 

 

 

 

 

 

 

Fig. 2.  Area of study: four districts at east of Naples (Italy) 

 Table 1. Values of the TFNs low, mean, high 

Output  low mean high 

  INF MEAN SUP INF MEAN SUP INF MEAN SUP 

o1 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 

o2 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 

o3 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 

o4 0.0 0.3 0.5 0.3 0.5 0.8 0.5 0.8 1.0 

 

i3=percentage of entrepreneurs and professionals = number of entrepreneurs and 

professionals/number of people employed, i4 = percentage of residents 

graduated=numbers of residents graduated/number of residents with age > 6 

years, i5=percentage of new residential buildings=number of  residential 
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buildings built since 1982/total number of residential buildings, i6 = percentage 

of residential dwellings owned=number of  residential dwellings owned/ total 

number of residential dwellings, i7 = percentage of residential dwellings with 

central heating system = number of residential dwellings with central heating 

system/total number of residential dwellings. In Table 4 we show these input 

data for the four subzones. 

Table 2.  Input data given for the four subzones 

District i1 i2 i3 i4 i5 i6 i7 

Barra 0.604 0.227 0.039 0.032 0.111 0.424 0.067 

Poggioreale 0.664 0.297 0.060 0.051 0.086 0.338 0.149 

Ponticelli 0.609 0.253 0.039 0.042 0.156 0.372 0.159 

S. Giovanni 0.576 0.244 0.041 0.031 0.054 0.353 0.097 

 

Table 3. TFNs values for the input domains 

Input 

Var 

low Mean High 

 INF MEAN SUP INF MEAN SUP INF MEAN SUP 

i1 0.00 0.40 0.60 0.40 0.60 0.80 0.60 0.80 1.00 

i2 0.00 0.10 0.30 0.10 0.30 0.40 0.30 0.50 1.00 

i3 0.00 0.04 0.06 0.04 0.06 0.10 0.07 0.20 1.00 

i4 0.00 0.02 0.04 0.02 0.04 0.07 0.04 0.07 1.00 

i5 0.00 0.05 0.08 0.05 0.08 0.10 0.08 0.10 1.00 

i6 0.00 0.10 0.30 0.10 0.30 0.60 0.30 0.60 1.00 

i7 0.00 0.10 0.30 0.10 0.30 0.50 0.30 0.50 1.00 
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Table 4:  TFNs for the symptoms b1 ÷ b12 

Subzone 

b1: 

i1 = 

low 

b2: 

i1 = 

me- 

an 

b3: 

i1 = 

hi-gh 

b4: 

i2 = 

low 

b5: 

i2= 

me- 

an 

b6: 

i2 = 

hi-

gh 

b7: 

i3 = 

low 

b8: 

i3 = 

me- 

an 

b9: 

i3 = 

hi-

gh 

b10: 

i4 = 

low 

b11: 

i4 = 

me-

an 

b12: 

i4 = 

hi-

gh 

Barra 0.00 0.98 0.02 0.36 0.63 0.00 1.00 0.00 0.00 0.40 0.60 0.00 

Poggioreale 0.00 0.93 0.07 0.01 0.99 0.00 0.00 1.00 0.00 0.00 0.63 0.37 

Ponticelli 0.00 0.91 0.05 0.23 0.76 0.00 1.00 0.00 0.00 0.00 0.93 0.07 

S. Giovanni 0.12 0.88 0.00 0.28 0.72 0.00 0.95 0.05 0.00 0.45 0.55 0.00 

 

The expert indicates a fuzzy partition for each input domain formed from three 

TFNs labeled “low”, “mean” and “high”, whose values are reported in Table 3.  

In Tables 4 and 5 we show the values of TFNS for the 21 symptoms b1,...,b21. 

In order to form the SFRE (1) in each subzone, the expert defines the most 

significant symptoms.  

 

Table 5:  TFNs for the symptoms b13 ÷ b21 

Subzone 

b13:  

i5 = 

low 

b14:  

i5 = 

mean 

b15:  

i5 = 

high 

b16:  

i6 = 

low 

b17:  

i6 = 

mean 

b18:  

i6 = 

high 

b19:  

i7 = 

low 

b20:  

i7 = 

mean 

b21:  

i7 = 

high 

Barra 0.00 0.00 0.10 0.00 0.59 0.41 1.00 0.00 0.00 

Poggioreale 0.00 0.70 0.30 0.00 0.87 0.13 0.75 0.25 0.00 

Ponticelli 0.00 0.00 1.00 0.00 0.76 0.24 0.70 0.30 0.00 

S. Giovanni 0.87 0.13 0.00 0.00 0.82 0.18 1.00 0.00 0.00 
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4.1  Subzone “Barra” 

The expert chooses the significant symptoms b2, b4, b5, b7, b10, b11, b15, b17, b18, 

b19, by obtaining a SFRE (1) with m = 10 equations and n = 12 unknowns. The 

matrix A of the impact values aij has dimensions 10×12 and the vector B of the 

symptoms bi has dimension 10×1 and both are given below. The SFRE (1) is 

inconsistent and eliminating the rows for which the value IND(j) = 0, we obtain 

four maximal interval solutions Xmax(t) (t=1,…,4) and we calculate the vector 

column XMeant on each maximal interval solution. Hence we associate to the 

output variable os (s = 1,…,4),  the linguistic label of the fuzzy set with the 

higher value calculated with formula (5) obtained for the corresponding 

unknowns 
sj

x,...,x
1j

and given in Table 6. For determining the reliability of our 

solutions, we use the index given by formula (6). We obtain that Relt(o1) = 

Relt(o2) = Relt(o3) = Relt(o4) = 0.6025 for t=1,…,4 and hence 

Rel(O)=max{Relt(O): t=1,…,4}=0.6025 where O={o1,…o4}. We note that the 

same final set of linguistic labels associated to the output variables o1 = “high”, 

o2 = “mean”, o3 = “low”, o4 = “low” is obtained as well. The relevant quantities 

are given below.  
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Table 6. Final linguistic labels for the output variables in the district Barra 

Output variable score1(os) score2(os) score3(os) score4(os) 

o1 high high high high 

o2 mean mean mean mean 

o3 low low low low 

o4 low low low low 

 

For determining the reliability of our solutions, we use the index given by 

formula (6). We obtain Rel(Ok) = 0.4675 for k = 1,..,12. Then we obtain two  

final sets of linguistic labels associated to the output variables: o1 = “low”, o2 = 

“low”, o3 = “low”, o4 = “low”, and o1 = “low”, o2 = “low”, o3 = “low”, o4 = 

“mean”,  with a same reliability index value 0.4675. The expert prefers to choose 

the second solution: o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean” because 

he considers that in the last two years in this district the presence of building 

and residential dwellings of new construction has increased although 

marginally. 

 4.2 Subzone “Poggioreale” 

The expert choices the significant symptoms b2, b5, b8, b11, b12, b14, b15, b17, b18, 

b19, b20, by obtaining a SFRE (1) with m = 11 equations and n = 12 unknowns. 

The matrix A of the impact values aij has sizes dimension 11×12 and the column 
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vector B of the symptoms bi  has sizes 11×1 are given below. The SFRE (7) is 

inconsistent and eliminating the rows for which the value IND(j) = 0, we obtain 

12 maximal interval solutions Xmax(t) (t=1,…,12) and we calculate the vector 

column XMeant on each maximal interval solution. Table 7 contains the output 

variables and the relevant quantities are given below. 
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For determining the reliability of our solutions, we use the index given by 

formula (6). We obtain Rel(Ok) = 0.4675 for k = 1,..,12. Then we obtain two  

final sets of linguistic labels associated to the output variables: o1 = “low”, o2 = 

“low”, o3 = “low”, o4 = “low”, and o1 = “low”, o2 = “low”, o3 = “low”, o4 = 

“mean”,  with a same reliability index value 0.4675. The expert prefers to choose 

the second solution: o1 = “low”, o2 = “low”, o3 = “low”, o4 = “mean” because 

he considers that in the last two years in this district the presence of building 

and residential dwellings of new construction has increased although 

marginally.  

 

 



Ferdinando Di Martino, Salvatore Sessa 

54 

 

Table 7. Final linguistic labels for the output variables in the district 

“Poggioreale” 

 L i n g u i s t i c  l a b e l s  a s s o c i a t e d  t o 

o
u

tp
u

t 

v
ar

ia
b

le
 

X
M

ea
n

1
 

X
M

ea
n

2
 

X
M

ea
n

3
 

X
M

ea
n

4
 

X
M

ea
n

5
 

X
M

ea
n

6
 

X
M

ea
n

7
 

X
M

ea
n

8
 

X
M

ea
n

9
 

X
M

ea
n

1
0

 

X
M

ea
n

1
1
 

X
M

ea
n

1
2
 

o1 low low low high low low low high low low low high 

o2 low low low mea

n 

low low low mea

n 

low low low mea

n 

o3 low low low low low low low low low low low low 

o4 low m e a n low m e a n low m e a n low m e a n low m e a n low m e a n 

 

4.3 Subzone: District Ponticelli 

The expert choices the significant symptoms b2, b4, b5, b7, b11, b15, b17, b18, b19, 

b20, obtaining a SFRE (7) with m = 10 equations and n = 12 variables: The 

matrix A of sizes 10×12 and the column vector B of dimension 10×1 are given 

by: 
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0.23

91.0

 B    

1.05.03.00.02.01.00.02.01.00.02.01.0

0.02.07.01.02.04.01.02.04.00.01.02.0

2.01.00.02.01.00.02.01.00.02.01.00.0

3.07.03.02.08.02.02.08.02.03.07.03.0

0.11.00.07.03.01.07.03.01.00.11.00.0

0.03.01.01.08.02.01.09.03.01.08.04.0

0.01.03.02.02.08.00.01.00.10.02.00.1

0.00.00.02.08.02.02.08.02.02.08.02.0

0.00.00.00.01.02.00.01.02.00.01.02.0

2.03.01.03.07.02.02.00.10.40.01.00.5

A  
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The SFRE (7) is inconsistent and eliminating the rows for which the value 

IND(j) = 0, we obtain 8 maximal interval solutions Xmax(t) (t=1,…,8) and we 

calculate the vector column XMeant on each maximal interval solution. Table 

10 contains the output variables and the relevant quantities are given below. 
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]00.1,00.1[

]00.1,00.0[

]76.0,00.0[

]00.1,00.0[

      

]00.1,00.1[

]30.0,00.0[
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50.0

76.0

00.1

00.1

38.0

5.0

         

50.0

15.0

85.0

50.0

38.0

50.0
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50.0
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50.0
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85.0
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     8765 XMeanXMeanXMeanXMean

 

 

Now we associate to the output variables  os k = 1,…,4,  the linguistic label of 

the fuzzy set with the higher XMeanj obtained for the corresponding unknowns 

1j
x ,…, 

sj
x obtaining: 

Table 8. Final linguistic labels for the output variables in the district “Ponticelli” 

L i n g u i s t i c  l a b e l s  a s s o c i a t e d  t o  

o
u
tp

u
t 

v
ar

ia
b
le

 

     
 

X
M

ea
n

1 

      
 

X
M

ea
n

2 

 
X

M
ea

n
3
 

X
M

ea
n

4
 

X
M

ea
n

5
 

X
M

ea
n

6
 

X
M

ea
n

7
 

X
M

ea
n

8
 

o1 Low-high high low Low

-high 

Low

-high 

high low Low

-high 

o2 mean low mea

n 

low Low

-high 

low Low

-high 

low 

o3 Low-high Low-high Low

-high 

Low

-high 

mea

n 

mea

n 

mea

n 

mea

n 

o4 low low low low low low low low 

 

Here “low-high” indicates that the membership degree of both the fuzzy sets 

with linguistic labels “low” and “high” have the maximal value for that output 

variable. We obtain for each solution Rel(O1) =0.565,  Rel(O2) = 0.625, Rel(O3) 



Max-Min Fuzzy Relation Equations for a Problem of Spatial Analysis 

57 

 

= 0.565 Rel(O4) = 0.5, Rel(O5) =0.565,  Rel(O6) = 0.69, Rel(O7) = 0.565 Rel(O8) 

= 0.565. 

Thus we choice the solution O6 which have the greatest reliability Rel(O6) = 

0.69. Our solution for this subzone is: o1 = “high”, o2 = “low”, o3 = “mean”, o4 

= “low”. 

 

4.4 Subzone: district S. Giovanni 

The expert choices the significant symptoms b2, b4, b5, b7, b11, b15, b17, b18, b19, 

b20, obtaining a SFRE (1) with m = 12 equations and n = 12 variables: The 

matrix A of sizes 12×12 and the column vector B of sizes 12×1 are given by: 

 





























































































0.1

18.0

0.82

0.13

0.87

0.55

0.45

0.95

0.72

0.28

0.88

12.0

 B   

0.00.00.10.01.04.00.01.04.01.02.05.0

5.01.00.01.00.00.01.00.00.01.00.00.0

1.07.03.03.06.03.03.06.03.03.06.03.0

1.04.01.00.01.00.00.01.00.00.01.00.0

0.02.08.01.02.05.01.02.05.01.03.06.0

0.02.00.02.08.02.02.05.02.02.06.03..0

0.01.02.01.03.06.01.03.05.01.03.05.0

0.01.03.00.01.09.00.01.00.10.02.00.1

0.02.00.02.08.02.02.08.02.02.08.02.0

0.00.02.00.01.04.00.01.04.00.01.04.0

0.03.00.01.09.01.01.09.01.01.09.01.0

0.00.01.00.01.03.00.01.00.30.00.10.3

A  
 

The SFRE (1) is inconsistent and eliminating the rows for which the value 

IND(j) = 0, we obtain 6 maximal interval solutions Xmax(t) (t=1,…,6) and we 

calculate the vector column XMeant on each maximal interval solution. Table 

11 contains the output variables and the relevant quantities are given below. 
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Table 9. Final linguistic labels for the output variables in the district “San 

Giovanni” 

output 

variabl

e  

linguistic 

label 

associate

d to 

XMean1 

linguistic 

label 

associate

d to 

XMean2 

linguistic 

label 

associate

d to 

XMean3 

linguistic 

label 

associate

d to 

XMean4 

linguistic 

label 

associate

d to 

XMean5 

linguistic 

label 

associate

d to 

XMean6 

o1 mean high mean high mean high 

o2 mean mean mean mean mean mean 

o3 high mean high mean high mean 

o4 low low low low low low 

 

We obtain Rel(Ok) = 0.6925 for  k = 1,…,6. Thus we obtain two  final sets of 

linguistic labels associated to the output variables: o1 = “mean”, o2 = “mean”, 

o3 = “high”, o4 = “low”, and o1 = “high”, o2 = “mean”, o3 = “mean”, o4 = “low” 

with the same reliability index value 0.6925. The expert prefers to choose the 

first solution: o1 = “mean”, o2 = “mean”, o3 = “high”, o4 = “low”, because he 

considers in this district that in the two years the presence of residents was 

graduated and consequently, the cultural level of citizens has increased, whereas 

the average pro capite wealth of citizens has decreased. 
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4.5 Thematic maps and conclusions 

Finally, we obtain four final thematic maps shown in Figs. 3, 4, 5, 6 for the 

output variable o1, o2, o3, o4, respectively. 

 

 

Fig. 3. Thematic map 

for output variable o1 

(Economic prosperity) 

 

 

 

   

Fig. 4. Thematic map 

of the output variable 

o2  (Transition into the  

job) 

 

 

 

 

 

 

Fig. 5. Thematic map 

for the output variable 

o3  (Social 

Environment) 
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Fig. 6. Thematic map 

for the output variable 

o4 (Housing 

development) 

 

 

 

The results show that there was no housing development in the four districts in 

the last 10 years and there is difficulty in finding  job positions. In Fig. 7 we 

show the histogram of the reliability index Rel(O) for each subzone, where 

O=[o1,o2,o3,o4]. 

 

Fig. 7. Histogram of 

the reliability index 

Rel(O) for the four 

subzones. 

 

 

 

 

 

This paper is a new reformulation of our work titled “Spatial Analysis and Fuzzy 

Relation Equations” published in Advances in Fuzzy Systems, 

Volume 2011 (2011), Article ID 429498, 14 pages 

(http://dx.doi.org/10.1155/2011/429498)  (under Common License) where an 

extended version of the first three sections can be found, indeed an extended 

version  of Section 4 is here more complete with respect to Section 4 presented 

there.  
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Abstract  

Hyperstructure theory can overcome restrictions which ordinary algebraic 

structures have. A hyperproduct on non-square ordinary matrices can be 

defined by using the so called helix-hyperoperations. We study the helix-

hyperstructures on the representations using ordinary fields. The related 

theory can be faced by defining the hyperproduct on the set of non square 

matrices. The main tools of the Hyperstructure Theory are the fundamental 

relations which connect the largest class of hyperstructures, the Hv-

structures, with the corresponding classical ones. We focus on finite 

dimensional helix-hyperstructures and on small Hv-fields, as well.  

 

Keywords:  hyperstructures, Hv-structures, h/v-structures, hope. 
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1 Introduction  

    

We deal with the largest class of hyperstructures called Hv-structures 

introduced in 1990 [10], [11], which satisfy the weak axioms where the non-

empty intersection replaces the equality.   

Definitions 1.1 In a set H equipped with a hyperoperation (which we abbreviate 

it by hope)   

∙ : HHP (H)-{}: (x,y) x∙yH 

we abbreviate by 

WASS  the  weak associativity:    (xy)zx(yz), x,y,zH    and by  

COW  the  weak commutativity:     xyyx, x,yH.   

The hyperstructure (H,) is called Hv-semigroup if it is WASS and is called Hv-

group if it is reproductive Hv-semigroup:  xH=Hx=H, xH.    

(R,+,) is called  Hv-ring  if (+) and () are WASS, the reproduction axiom is 

valid for (+) and  () is  weak distributive  with respect to (+):     

x(y+z)(xy+xz),    (x+y)z(xz+yz), x,y,zR. 

For more definitions, results and applications on Hv-structures, see books and 

the survey papers as [2], [3], [11], [1], [6], [15], [16], [20]. An extreme class is 

the following: An Hv-structure is very thin iff all hopes are operations except 

one, with all hyperproducts singletons except only one, which is a subset of 

cardinality more than one. Thus, in a very thin Hv-structure in a set H there exists 

a hope () and a pair (a,b)H2 for which ab=A, with cardA>1, and all the other 

products, with respect to any other hopes (so they are operations), are singletons. 

The fundamental relations β* and γ* are defined, in Hv-groups and Hv-rings, 

respectively, as the smallest equivalences so that the quotient would be group 

and ring, respectively [9], [10], [11], [12], [13]. The main theorem is the 

following:  

Theorem 1.2 Let (H,) be an Hv-group and let us denote by U the set of all finite 

products of elements of H. We define the relation β in H as follows:  xβy  iff 

{x,y}u where uU. Then the fundamental relation β* is the transitive closure 

of the relation β. 

An element is called single if its fundamental class is a singleton. 

Motivation for Hv-structures:  

The quotient of a group with respect to an invariant subgroup is a group. 

Marty states that, the quotient of a group by any subgroup is a hypergroup. 



Helix-Hopes on Finite Hyperfields 

67 

 

Now, the quotient of a group with respect to any partition is an Hv-group. 

Definition 1.3 Let (H,), (H,) be Hv-semigroups defined on the same H. () is 

smaller than (), and () greater than (), iff there exists automorphism  

fAut(H,)  such that   xyf(xy), xH. 

Then (H,) contains (H,) and write   .  If (H,) is structure, then it is basic 

and (H,) is an Hb-structure. 

The Little Theorem [11]. Greater hopes of the ones which are WASS or COW, 

are also WASS and COW, respectively. 

Fundamental relations are used for general definitions of hyperstructures. 

Thus, to define the general Hv-field one uses the fundamental relation γ*:   

Definition 1.4 [10], [11]. The Hv-ring (R,+,) is called Hv-field if the quotient 

R/γ* is a field. 

Let ω* be the kernel of the canonical map from R to R/γ*; then we call 

reproductive Hv-field any Hv-field (R,+,) if  

x(R-ω*)=(R-ω*)x=R-ω*,xR-ω*. 

From this definition, a new class is introduced [15]: 

Definition 1.5 The Hv-semigroup (H,) is h/v-group if the H/β* is a group.   

Similarly h/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces, are defined. 

The h/v-group is a generalization of the Hv-group since the reproductivity is not 

necessarily valid. Sometimes a kind of reproductivity of classes is valid, i.e. if H 

is partitioned into equivalence classes σ(x), then the quotient is reproductive   

xσ(y)=σ(xy)=σ(x)y, xH.    

An Hv-group is called cyclic [11], if there is element, called generator, which 

the powers have union the underline set, the minimal power with this property is 

the period of the generator. If there exists an element and a special power, the 

minimum, is the underline set, then the Hv-group is called single-power cyclic.  

Definitions 1.6 [11], [14]. Let (R,+,) be an Hv-ring, (M,+) be COW Hv-group 

and there exists an external hope  : RMP(M):(a,x)ax, such that, a,bR 

and x,yM  we have 

a(x+y)(ax+ay),    (a+b)x(ax+bx),    (ab)xa(bx), 

then M is called an Hv-module over R. In the case of an Hv-field F instead of Hv-

ring R, then the Hv-vector space is defined. 

Definition 1.7 [17]. Let (L,+) be Hv-vector space on (F,+,), φ:FF/γ*, the 

canonical map and ωF={xF:φ(x)=0}, where 0 is the zero of the fundamental 
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field F/γ*. Similarly, let ωL be the core of the canonical map φ: LL/ε* and 

denote again 0 the zero of L/ε*. Consider the bracket (commutator) hope: 

[ , ] : LLP(L): (x,y)[x,y] 

then L is an Hv-Lie algebra over F if the following axioms are satisfied: 

(L1)  The bracket hope is bilinear: 

[λ1x1+λ2x2,y](λ1[x1,y]+λ2[x2,y])  

[x,λ1y1+λ2y](λ1[x,y1]+λ2[x,y2]), x,x1,x2,y,y1,y2L and λ1,λ2F 

(L2)  [x,x]ωL, xL 

(L3)  ([x,[y,z]]+[y,[z,x]]+[z,[x,y]])ωL, x,yL 

Two well known and large classes of hopes are given as follows [11], [16]: 

Definitions 1.8 Let (G,) be a groupoid, then for every subset PG, P, we 

define the following hopes, called P-hopes:   x,yG 

P: xPy = (xP)yx(Py),   

 Pr: xPry= (xy)Px(yP),     Pl: xPly= (Px)yP(xy). 

The (G,P), (G,Pr) and (G,Pl) are called P-hyperstructures.  

The usual case is for semigroup (G,), then  

xPy=(xP)yx(Py)=xPy 

and (G,P) is a semihypergroup but we do not know about (G,Pr) and (G,Pl). In 

some cases, depending on the choice of P, the (G,Pr) and (G,Pl) can be 

associative or WASS.  

A generalization of P-hopes: Let (G,) be abelian group and P a subset of G 

with more than one elements. We define the hope P as follows: 

xPy = {xhy hP}    if   xe  and  ye 

xPy   =        

                      xy                                 if   x=e   or  y=e 

we call this hope, Pe-hope. The hyperstructure (G,P) is an abelian Hv-group. 

Definition 1.9 Let (G,) be groupoid (resp., hypergroupoid) and f:GG be a 

map. We define a hope (), called theta-hope, we write -hope, on G as follows 

xy = {f(x)y, xf(y)} ( resp. xy = (f(x)y)(xf(y) ), x,yG.   

If () is commutative then  is commutative. If () is COW, then  is COW. 
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If (G,) is groupoid (or hypergroupoid) and f:GP(G)-{} multivalued map. 

We define the -hope on G as follows:   xy = (f(x)y)(xf(y)), x,yG. 

Motivation for the -hope is the map derivative where only the product of 

functions can be used.  

Basic property: if (G,) is semigroup then f, the -hope is WASS.  

 

2  Some Applications of Hv-Structures 

 

Last decades Hv-structures have applications in other branches of 

mathematics and in other sciences. These applications range from 

biomathematics -conchology, inheritance- and hadronic physics or on leptons to 

mention but a few. The hyperstructure theory is closely related to fuzzy theory; 

consequently, hyperstructures can be widely applicable in industry and 

production, too [2], [3], [7], [18].  

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic 

Mechanics problems. Santilli proposed a ‘lifting’of the n-dimensional trivial unit 

matrix of a normal theory into a nowhere singular, symmetric, real-valued, 

positive-defined, n-dimensional new matrix. The original theory is reconstructed 

such as to admit the new matrix as left and right unit. The isofields needed 

correspond into the hyperstructures introduced by Santilli & Vougiouklis in 

1999 [7] and they are called e-hyperfields. The Hv-fields can give e-hyperfields 

which can be used in the isotopy theory in applications as in physics or biology.  

Definition 2.1 A hyperstructure (H,) which contain a unique scalar unit e, is 

called e-hyperstructure. In an e-hyperstructure, we assume that for every 

element x, there exists an inverse  x-1, i.e.  exx-1x-1x.        

Definition 2.2  A hyperstructure (F,+,), where (+) is an operation and () is a 

hope, is called e-hyperfield if the following axioms are valid:  (F,+) is an abelian 

group with the additive unit 0,  () is WASS,  () is weak distributive with respect 

to (+),  0 is absorbing element: 0x=x0=0, xF, there exist a multiplicative 

scalar unit 1, i.e. 1x=x1=x, xF, and xF there exists a unique inverse x-1, 

such that  1xx-1x-1x.  

The elements of an e-hyperfield are called e-hypernumbers. If the relation: 

1=xx-1=x-1x, is valid, then we say that we have a strong e-hyperfield.  

Definition 2.3 The Main e-Construction. Given a group (G,), where e is the 

unit, then we define in G, a large number of hopes () as follows:   

xy = {xy, g1, g2,…}, x,yG-{e}, where g1, g2,…G-{e} 
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g1, g2,… are not necessarily the same for each pair (x,y).  (G,) is an Hv-group, it 

is an Hb-group which contains the (G,). (G,) is an e-hypergroup. Moreover, if 

for each x,y such that  xy=e, so we have  xy=xy, then  (G,) becomes a strong 

e-hypergroup.  

The main e-construction gives an extremely large number of e-hopes.  

Example 2.4 Consider the quaternion group Q={1,-1, i,-i, j,-j, k,-k} with 

defining relations   i2 = j2 = -1,  ij = -ji = k.  Denoting  i={i,-i}, j={j,-j}, k={k,-k} 

we may define a very large number () hopes by enlarging only few products. 

For example, (-1)k=k, ki=j and ij=k. Then the hyperstructure (Q,) is a 

strong e-hypergroup. 

Mathematicalisation of a problem could make its results recognizable and 

comparable. This is because representing a research object or a phenomenon 

with numbers, figures or graphs might be simplest and in a recognizable way of 

reading the results. In questionnaires Vougiouklis & Vougiouklis proposed the 

substitution of Likert scales with the bar [5], [18].This substitution makes things 

simpler and easier for both the subjects of an empirical research and the 

researcher, either at the stage of designing or that of results processing, because 

it is really flexible. Moreover, the application of the bar opens a window 

towards the use of fuzzy sets in the whole procedure of empirical research, 

activating in this way more recent findings from different sciences, as well. The 

bar is closelly related with hyperstructure and fuzzy theories, as well. 

More specifically, the following was proposed: 

In every question, substitute the Likert scale with the ‘bar’ whose poles are 

defined with ‘0’ on the left and ‘1’ on the right: 

                         0                          1 

The subjects/participants are asked, instead of deciding and checking a specific 

grade on the scale, to cut the bar at any point they feel best expresses their 

answer to the specific question.  

The suggested length of the bar is approximately 6.18cm, or 6.2cm, following 

the golden ration on the well known length of 10cm.  

 

3 Small Hv-Numbers. Hv-Matrix Representations   

In representations important role are playing the small hypernumbers. 

Construction 3.1 On the ring (Z4,+,∙) we will define all the multiplicative h/v-

fields which have non-degenerate fundamental field and, moreover they are,  

(a)  very thin minimal,  
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(b)  COW (non-commutative),  

(c)  they have the elements 0 and 1, scalars.  

Then, we have only the following isomorphic cases 23={0,2} or 32={0,2}.  

Fundamental classes: [0]={0,2}, [1]={1,3} and we have (Z4,+,)/γ*(Z2,+,∙). 

Thus it is isomorphic to (Z2×Z2,+). In this Hv-group there is only one unit and 

every element has a unique double inverse. Only f has one more right inverse 

element, the d, since  fd={I,b}. Moreover, the (X,) is not cyclic.  

Construction 3.2 On (Z6,+,∙) we define, up to isomorphism, all multiplicative 

h/v-fields which have non-degenerate fundamental field and, moreover they are: 

(a)  very thin minimal 

(b)  COW (non-commutative) 

(c)  they have the elements 0 and 1, scalars 

Then we have the following cases, by giving the only one hyperproduct, 

(i)  23={0,3}  or  24={2,5}  or  25={1,4}        

      34={0,3}  or  35={0,3}  or  45={2,5}  

In all 6 cases the fundamental classes are [0]={0,3}, [1]={1,4}, [2]={2,5} and 

we have   (Z6,+,)/γ*  (Z3,+,∙). 

(ii)  23={0,2}  or  23={0,4}  or  24={0,2}  or  24={2,4}  or    

25={0,4}  or  25={2,4}  or  34={0,2}  or  34={0,4}  or    

35={1,3}  or  35={3,5}  or  45={0,2}  or  45={2,4}.          

In all 12 cases the fundamental classes are [0]={0,2,4}, [1]={1,3,5} and we have   

(Z6,+,)/γ*  (Z2,+,∙). 

Remark that if we need h/v-fields where the elements have at most one 

inverse element, then we must exclude the case of 25={1,4} from (i), and the 

case 35={1,3} from (ii). 

Hv-structures are used in Representation Theory of Hv-groups which can be 

achieved by generalized permutations or by Hv-matrices [11], [12], [13], [14].  

Hv-matrix (or h/v-matrix) is a matrix with entries of an Hv-ring or Hv-field 

(or h/v-ring or h/v-field). The hyperproduct of two Hv-matrices (aij) and (bij), of 

type mn and nr respectively, is defined in the usual manner and it is a set of 

mr Hv-matrices. The sum of products of elements of the Hv-ring is considered 

to be the n-ary circle hope on the hyperaddition. The hyperproduct of Hv-

matrices is not necessarily WASS. 

The problem of the Hv-matrix (or h/v-group) representations is the following:  

Definition 3.3 Let (H,) be Hv-group (or h/v-group). Find an Hv-ring (or h/v-

ring) (R,+,), a set  MR={(aij)aijR} and a map T:HMR: h T(h) such that   
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T(h1h2) T(h1)T(h2)  , h1,h2H. 

T is Hv-matrix (or h/v-matrix) representation. If T(h1h2)T(h1)T(h2), h1,h2H, 

then T is called inclusion. If T(h1h2)=T(h1)T(h2)= {T(h)hh1h2}, h1,h2H, 

then T is good and then an induced representation T* for the hypergroup algebra 

is obtained. If T is one to one and good then it is faithful. 

 

The main theorem on representations is [13]:       

Theorem 3.4 A necessary condition to have an inclusion representation T of an 

h/v-group (H,) by nn, h/v-matrices over the h/v-ring (R,+,) is the following: 

For all classes β*(x), xH must exist elements aijH, i,j{1,...,n} such that 

T(β*(a))  {A=(aij)aijγ*(aij), i,j{1,...,n}} 

Inclusion T:HMR:a T(a)=(aij) induces homomorphic representation T* of 

H/β* on R/γ* by setting T*(β*(a))=[γ*(aij)], β*(a)H/β*, where γ*(aij)R/γ* 

is the ij entry of the matrix T*(β*(a)). T* is called fundamental induced of T. 

In representations, several new classes are used: 

Definition 3.5 Let M=Mmn be the module of mn matrices over R and P={Pi:iI}M. 

We define a P-hope P on M as follows 

P: MM  P(M): (A,B)  APB={APt
iB: iI } M 

where Pt denotes the transpose of P.   

The hope P is bilinear map, is strong associative and  inclusion distributive: 

AP(B+C)  APB+APC, A,B,CM 

Definition 3.6 Let M=Mmn the mn matrices over R and let us take sets 

  S={sk:kK}R,  Q={Qi:jJ}M,   P={Pi:iI}M. 

Define three hopes as follows 

S: RMP(M): (r,A)rSA = {(rsk)A: kK} M 

Q+: MMP(M): (A,B)AQ+B = {A+Qj+B: jJ} M 

P: MMP(M): (A,B)APB = {APt
iB: iI} M 

Then (M,S,Q+,P) is hyperalgebra on R called general matrix P-hyperalgebra. 
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4  Helix-Hopes and Applications 

Recall some definitions from [19], [8], [20], [4]: 

Definition 4.1 Let A=(aij)Mmn be mn matrix and s,tN be naturals such that 

1sm, 1tn. We define the map cst from Mmn to Mst by corresponding to the 

matrix A, the matrix Acst=(aij) where 1is, 1jt. We call this map cut-

projection of type st. Thus Acst is matrix obtained from A by cutting the lines, 

with index greater than s, and columns, with index greater than t.  

We use cut-projections on all types of matrices to define sums and products. 

Definitions 4.2 Let A=(aij)Mmn be an mn matrix and s,tN, 1sm, 1tn.  

We define the mod-like map st from Mmn to Mst by corresponding to A the 

matrix Ast=(aij) which has as entries the sets  

aij = {ai+κs,j+λt 1is, 1jt. and κ,λN, i+κsm,  j+λtn}. 

Thus we have the map 

st: Mmn  Mst: A  Ast = (aij). 

We call this multivalued map helix-projection of type st. Ast is a set of st-

matrices X=(xij) such that xijaij, i,j. Obviously Amn=A.  

Let A=(aij)Mmn be a matrix and s,tN such that 1sm, 1tn.  Then it is 

clear that we can apply the helix-projection first on the rows and then on the 

columns, the result is the same if we apply the helix-progection on both, rows 

and columns. Therefore we have  

(Asn)st =  (Amt)st =  Ast. 

Let A=(aij)Mmn be matrix and s,tN such that 1sm, 1tn. Then if Ast is 

not a set but one single matrix then we call A cut-helix matrix of type st.  In 

other words the matrix A is a helix matrix of type st, if   Acst= Ast. 

Definitions 4.3  

(a) Let A=(aij)Mmn , B=(bij)Muv be matrices and s=min(m,u), t=min(n,u). 

We define a hope, called helix-addition or helix-sum, as follows: 

: MmnMuvP(Mst): (A,B)AB=Ast+Bst=(aij)+(bij) Mst, 

where 

(aij)+( bij)= {(cij)= (aij+bij) aijaij and bijbij}. 

(b) Let A=(aij)Mmn and B=(bij)Muv be matrices and s=min(n,u). We define 

a hope, called helix-multiplication or helix-product, as follows: 

: MmnMuvP(Mmv):(A,B)AB=AmsBsv=(aij)(bij)Mmv, 
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where 

(aij)(bij)= {( cij)=(aitbtj) aijaij and bijbij}. 

The helix-sum is external hope since it is defined on different sets and the result 

is also in different set. The commutativity is valid in the helix-sum. For the 

helix-product we remark that we have AB=AmsBsv so we have either  

Ams=A or Bsv=B, that means that the helix-projection was applied only in one 

matrix and only in the rows or in the columns. If the appropriate matrices in the 

helix-sum and in the helix-product are cut-helix, then the result is singleton. 

Remark. In Mmn the addition is ordinary operation, thus we are interested only 

in the ‘product’. From the fact that the helix-product on non square matrices is 

defined, the definition of the Lie-bracket is immediate, therefore the helix-Lie 

Algebra is defined [17], as well. This algebra is an Hv-Lie Algebra where the 

fundamental relation ε* gives, by a quotient, a Lie algebra, from which a 

classification is obtained.  

In the following we restrict ourselves on the matrices Mmn where m<n. We 

have analogous results if m>n and for m=n we have the classical theory.  

Notation. For given κℕ-{0}, we denote by κ the remainder resulting from its 

division by m if the remainder is non zero, and κ=m if the remainder is zero. 

Thus a matrix A=(aκλ)Mmn,  m<n  is a cut-helix matrix if we have  aκλ=aκλ, 

κ,λℕ-{0}. 

Moreover let us denote by Ic=(cκλ) the cut-helix unit matrix which the cut matrix 

is the unit matrix Im. Therefore, since Im=(δκλ), where δκλ is the Kronecker’s 

delta, we obtain that, κ,λ, we have  cκλ=δκλ. 

Proposition 4.4 For m<n in (Mmn,) the cut-helix unit matrix Ic=(cκλ), where 

cκλ=δκλ, is a left scalar unit and a right unit. It is the only one left scalar unit. 

Proof. Let A,BMmn then in the helix-multiplication, since m<n, we take helix 

projection of the matrix A, therefore, the result AB is singleton if the matrix A 

is a cut-helix matrix of type mm. Moreover, in order to have AB=AmmB=B, 

the matrix Amm must be the unit matrix. Consequently, Ic=(cκλ), where  cκλ=δκλ, 

κ,λℕ-{0}, is necessarily the left scalar unit. 

Let A=(auv)Mmn and consider the hyperproduct AIc. In the entry κλ of this 

hyperproduct there are sets, for all 1κm, 1λn , of the form 

aκscsλ =  aκsδsλ=  aκλ aκλ. 

Therefore AIcA, AMmn.  ■ 

In the following examples of the helix-hope, we denote Eij any type of matrices 

which have the ij-entry 1 and in all the other entries we have 0.  
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Example 4.5 Consider the 23 matrices of the forms,  

Aκλ = E11+E13+κE21+E22+λE23, κ,λℤ.   

Then we obtain   AκλAst = {Aκ+s,κ+t, Aκ+s,λ+t, Aλ+s,κ+t, Aλ+s,λ+t}. 

Moreover     AstAκλ={Aκ+s,λ+s,Aκ+s,λ+t,Aκ+t,λ+s,Aκ+t,λ+t}, so  

AκλAstAstAκλ={Aκ+s,λ+t}, thus () is COW. 

The helix multiplication () is associative. 

Example 4.6 Consider all traceless matrices A=(aij)M23, in the sense that we 

have a11+ a22=0. The cardinality of the helix-product of any two matrices is 1, or 

23, or 26.  These correspond to the cases:  a11=a13 and a21=a23, or only a11=a13 

either only a21=a23, or if there is no restriction, respectively.  

Proposition. The Lie-bracket of two traceless matrices A=(aij), B=(bij)Mmn, 

m<n, contain at least one traceless matrix.  

Example 4.7 Let us denote by Eij the matrix with 1 in the ij-entry and zero in the 

rest entries. Then take the following 2×2 upper triangular h/v-matrices on the 

above h/v-field (Z4,+,), on the set  Z4={0,1,2,3}, of the case that only 

23={0,2} is a hyperproduct: 

I=E11+E22,   a=E11+E12+E22,  b=E11+2E12+E22,  c=E11+3E12+E22, 

d=E11+3E22,   e=E11+E12+3E22,  f=E11+2E12+3E22,  g=E11+3E12+3E22, 

A hyper-matrix representation of four dimensional case with helix-hope: 

Example 4.8 On the field of real or complex numbers we consider the four 

dimensional space of all 2×4 matrices of type, called helix-upper triangular 

matrices,  

            a    b    a    c             

A  =     0    d    0   d       

This set is closed under the helix-hope. That means that the helix-product of two 

such matrices is a 2×4 matrix, of the same type. In fact we have   

                  a    b    a    c          a   b   a   c 

AA =     0   d    0    d       0    d   0    d   =  

 

                a    {b,c}         a   b   a   c 

     =     0       d       • 0    d   0   d   =  

 

                  aa   {ab+bd, ab+cd}    aa   {ac+bd, ac+cd}   

     =       0                dd                 0                 dd               
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Therefore the result is a set with 4 matrices. 

Examples 4.9  
(a)  On the same type of matrices using the Construction 4.1, on (Z4,+,∙) we take 

the small h/v-field (Z4,+,), where only 23={0,2}, where we remind that the 

fundamental classes are {0,2}, {1,3}.  We take from the set of all matrices  

            a    b    a    c         

A =      0    d    0    d   

the matrix  

            2    1    2    3         

X =      0    1    0    1   

Then the powers of this matrix are 

              0    {1,3}   0    {1,3}         

X2  =      0       1        0       1       , 

 

              0    {1,3}   0    {1,3}         

X3  =      0       1        0       1       , 

We obtain that the generating set is the following 

       2    1    2   3   0   {1,3}    0   {1,3}        

0    1    0   1       0     1         0      1 

The classes remain the same. 

(b)  If we take the matrix  

            2    1    2    2         

Y =      0    1    0    1   

Then the powers of this matrix are 

              0    {0,3}   0    {1,2}         

Y2  =      0       1        0       1       , 

 

              0    Z4    0    Z4         

Y3  =      0     1     0     1       , 

We obtain that the generating set is the following 

       2    1    2   2   0    Z4    0    Z4        

0    1    0   1       0     1     0     1 

We have only one class. 
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Abstract

In this paper, we propose a delayed mathematical model to break the life
cycle of anopheles mosquito at the larva stage by incorporating a time delay
τ at the larva stage that accounts for the period of growth or development
to pupa. We prove local stability of the system’s equilibrium and find the
critical values for Hopf bifurcation to occur. Also, we find that the system’s
equilibrium undergoes stability switching from stable to periodic to unstable
and vice versa when the time delay τ crosses the imaginary axis from the left
half plane to the right half plane in the (Re, Im) plane. Finally, we perform
some numerical simulations and the results agree well with the analytical
analysis. This is the first time such a model is proposed.
Keywords: Delayed model; Anopheles mosquito; Malaria Control; Hopf
bifurcation; Larva; Stability analysis
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1 Introduction
Every year, one to three million deaths is attributed to malaria parasite in sub-

Saharan Africa out of which one third are children. Much work has been done
to genetically modify mosquitoes in the laboratory to hinder the parasite from
transmission thus, making the mosquitoes refractory. This can be achieved by
inserting of genes at appropriate site to create stable germline. The progress in
this area is fairly recent.

Malaria is a killer disease, is one of the leading causes of death in many parts
of the world. Its devastating effect has persisted for many decades. Despite the
longevity of the disease, malaria, which has been brought under control in some
developed countries, still constitutes a major health menace in many developing
countries, where most areas of high endemic reside. Some African countries, es-
pecially countries within sub-Saharan Africa, still feature among the leading areas
of high malaria endemic in the world [21]. According to World Health Organiza-
tion report [34], an estimated of about 225 million malaria clinical cases occurred
in 2009, with an estimated 781,000 malaria mortalities. Although these statistics
reflect a reduction compared to an estimated 243 million malaria cases, with an
estimated 863,000 malaria deaths, 89% of which occurred in Africa in 2008 [35],
the reduction is not sufficient. Generally, susceptibility to malaria is universal,
that is, any person living in a country where malaria is prevalent is at risk of con-
tracting the disease. However, the impact of malaria is greatest amongst children
below five [36], where one in every five childhood deaths is due to the effects
of the disease, among pregnant women, and among people from non-malarious
regions.

Temperature is known to affect the life stages of the mosquito parasite [3].
There is a general consensus that future changes in climate may alter the preva-
lence and incidence of malaria; however, there are conflicting views among au-
thors [20], [39], [40], [11]. However, some authors argued that climate and ecol-
ogy are the main factors the severity of malaria and the difficulty in controlling
it [12]. Other factors that have led to difficulties in controlling malaria are socio-
economic conditions, population growth, urbanization, drug resistance, deficien-
cies in health care systems, poor sanitation, lack of information and education,
water storage, garbage disposal, unpaved roads, and drainage systems that gen-
erate good breeding stagess for malaria transmission close to human settlements
[14], [23], [32]. Thus, research in malaria that integrates the disease dynamics
with breeding sites/life cycle properties of the vector and the different develop-
mental stages of the parasite may provide novel insights toward disease control
and eradication.

Although malaria is deadly, it can be cured by administering anti-malaria
drugs. However, in endemic regions, the malaria parasite develops resistance to
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such drugs and there is no effective vaccine for malaria. Consequently, prevention
is the only other option. Prevention can be achieved through the use of prophylac-
tic drugs and vector control strategies. To advance, plan, design, and implement
effective or better vector control measures, a clear understanding of mosquito pop-
ulation dynamics, the disease dynamics, and mosquito interaction with the human
population is necessary. We introduce a new approach to the development of mod-
els for malaria transmission, wherein the mosquito vector is placed at the centre
of the transmission process. Our objective is to develop a mathematical model for
the dynamics of malaria transmission that takes into consideration the population
dynamics of the malaria vector and how these vectors interact with the human
population. To do that, an understanding of the vector population demography
and dynamics is needed.

The malaria vector undergoes a complete metamorphosis, as it passes through
four different life stages in its cycle: egg, larva, pupa and adult. The egg, larva and
pupa stages are aquatic, while the adult stage is terrestrial. The entire cycle from
egg laying to the emergence of the adult mosquito takes approximately 7-20 days,
with 2-3 days spent in the egg stage, 4-10 days spent in the larva stage, and 2-4
days spent in the pupa stage [14]. While the average life span of the adult female
mosquito ranges from 2-3 weeks, that of the males is approximately one week.
As for the first three life stages, the life span of the adult mosquito depends on
the species and ambient temperature. In addition to natural factors, survival of the
adult female Anopheles mosquito also depends on its success in acquiring blood
meals from humans. Therefore, in this research we propose a delayed model to
break the life cycle at larva stage. To this end, we introduce a time delay τ at the
larva compartment to account for the control measures (this can be bio-organism
eg copecods or chemical substances). This is the firt such a delayed model is
proposed.

2 Model derivation
In this section, we derive the delayed model from the life cycle of anopheles

mosquito following the approached used in the paper by [22]. We make the fol-
lowing assumptions: The total population of anopheles mosquito is sub-divided
into four compartments (Adults, Eggs, Larva, and Pupa). The birth rate b is con-
stant and proportional to the total population b, there is a time delay τ in the
growth or development to pupa at the larva stage cause by the introduction of con-
trol measures (can be natural enemy e.g bio-organisms or chemical substances)
that can slow the growth process. Anopheles mosquito are assumed to transmit
malaria only through direct contact.
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Figure 1: A flow chart of the life cycle of a mosquito

From the model assumptions and the flow chart in figure (1) above, we de-
rive the following model. Let x1(t), x2(t), x3(t), x4(t) be the number of Adult
mosquitoes, Eggs, Larva, and Pupa at time t respectively. Then, the life cycle of
anopheles mosquito is represented by the following model:

ẋ1(t) = bN − (η + µ)x1(t) + ρx4(t)
ẋ2(t) = ηx1(t)− (γ + µ)x2(t)
ẋ3(t) = γx2(t)− νx3(t− τ)− µx3(t)
ẋ4(t) = νx3(t− τ)− (ρ+ µ)x4(t)

(1)

where b is the natural birth rate, η is the rate at which adult mosquitoes oviposit, µ
is the natural death rate, γ is the rate at which the eggs hatch, ν is the rate at which
larva develops to pupa, ρ is the rate at which pupa develops to adult mosquitoes.
The initial data are x1(θ) = φ1(θ), x2(θ) = φ2(θ), x3(θ) = φ3(θ), x4(θ) = φ4(θ))
for τ ∈ [−τ, 0], where φ = (φ1, φ2, φ3, φ4)

T ∈ C([−τ, 0],R4) such that φi ≥
0, i = 1, 2, 3, 4.
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3 Local stability analysis
It is obvious that model (1) has a trivial equilibrium E0 = (bN/µ, 0, 0, 0) and

a unique positive non-trivial equilibrium E∗ = (x∗1, x
∗
2, x
∗
3, x
∗
4), where

x∗1 =
b[(ρ+ µ)(ν + µ)N + ρν]

(η + µ)(ρ+ µ)(ν + µ)− ρνγη
, x∗2 =

ηx∗1
γ + µ

,

x∗3 =
γηx∗1 + b

ν + µ
, x∗4 =

ν(γηx∗1 + b)

(ν + µ)(ρ+ µ)
.

The characteristic polynomial equation for the linearised system 1 is

λ4 + p0λ
3 + p1λ

2 + p2λ+ p3 + (q0λ
3 + q1λ

2 + q2λ+ q3)e
−λτ = 0, (2)

where

p0 = 4µ+ ρ+ γ + η,
p1 = µ (ρ+ γ + η + 3µ) + 2 η µ+ η γ + 3µ2 + η ρ+ 2µ ρ+ γ ρ+ 2µ γ,
p2 = µ (2 η µ+ η γ + 3µ2 + η ρ+ 2µ ρ+ γ ρ+ 2µ γ) + η γ ρ+ µ3

+µ γ ρ+ µ2ρ+ η µ2 + µ2γ + η µ ρ+ η γ µ,
p3 = µ (η γ ρ+ µ3 + µ γ ρ+ µ2ρ+ η µ2 + µ2γ + η µ ρ+ η γ µ) ,
q0 = ν, q1 = ν (ρ+ γ + η + 3µ) ,
q2 = ν (µ (ρ+ γ + η + 2µ) + γ ρ+ µ γ + η µ+ η ρ+ µ2 + µ ρ+ η γ) ,
q3 = ν µ (γ ρ+ µ γ + η µ+ η ρ+ µ2 + µ ρ+ η γ) .

(3)
If τ = 0 the characteristic equation 2 becomes

λ4 + (p0 + q0)λ
3 + (p1 + q1)λ

2 + (p2 + q2)λ+ (p3 + q3) = 0. (4)

By Routh-Hurwitz condition, we have the following necessary and sufficient con-
ditions for 4 to have roots with negative real part

H1 = p0 + q0 > 0
H2 = (p0 + q0)(p1 + q1)− (p2 + q2) > 0
H3 = (p0 + q0)[(p1 + q1)(p2 + q2)− (p0 + q0)(p3 + q3)]− (p2 + q1)

2 > 0
H4 = p3 + q3 > 0.

(5)

Hi > 0, i = 1, 2, 3, 4. (A2)
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Lemma 3.1.
If A2 is satisfied, then the characteristic equation 4 have roots with negative real
part.

The above result is true only when τ = 0.

Now if τ > 0, we let λ = iξ (ξ > 0) be a root of the characteristic equation 2,
then

ξ4 − ip0ξ3 − p1ξ2 + ip2ξ + p3 + (−iq0ξ3 − 2q1ξ
2 + iq2ξ + q3)(cos(ξτ)− i sin(ξτ)) = 0.

(6)
Separating equation 6 into real and imaginary parts we have

ξ4 − p1ξ2 + p3 = (q1ξ
2 − q3) cos (ξ (τ)) + (q0ξ

3 − q2ξ) sin (ξ (τ)) ,
−p0ξ3 + p2ξ+ = (q0ξ

3 − q2ξ) cos (ξ (τ))− (q1ξ
2 − q3) sin (ξ (τ)) .

(7)

Squaring both sides of 7 and adding we have the following

ξ8 + s0ξ
6 + s1ξ

4 + s22 + s3 = 0, (8)

where s0 = p0
2 − q02 − 2 p1, s1 = 2 p3 + p1

2 + 2 q0q2 − q12 − 2 p0p2,
s2 = −2 p1p3 + 2 q1q3 + p2

2 − q22, s3 = p3
2 − q32. Let z = ξ2, then

z4 + s0z
3 + s1z

2 + s2z + s3 = h(z). (9)

From 9
dh(z)

dz
= 4z3 + 3s0z

2 + 2s1z + s2 = g(z). (10)

Let y = z + s0
4

then g(z) = 0,

⇒ y3 + ay + b = 0, (11)

where a =
8s0−3s20

16
, b =

s30−4s0s1+8s2
32

.
By Cardano’s theorem, we have

Q =
24s1−9s20

144

R =
216s0s1−432s2−54s30

3456

D = Q3 +R2

K1 =
3
√
R +
√
D

K2 =
3
√
R−
√
D

(12)

and then
z1 = K1 +K2 − s0

4

z2 = −K1+K2

2
− 3s0

12
+ i
√
3

2
(K1 −K2)

z3 = −K1+K2

2
− 3s0

12
− i
√
3

2
(K1 −K2)

(13)
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Assume that D > 0, then the equation g(z) = 0 has one real root namely;
z∗1 = z1 and two complex conjugates, if D = 0, then all roots of g(z) = 0 are
real and at least two are equal, namely; z1, z2 = z3, where z∗2 = max{z1, z2}, if
D < 0, then all roots of g(z) = 0 are real and distinct, namely; z1, z2, z3, where
z∗3 = max{z1, z2, z3}.

According to Lemma 2.2 in Li and Hu [38], we have the following

Lemma 3.2.
1. If s3 < 0, then equation 9 has at least one positive root.

2. If s3 ≥ 0, then equation 9 has no positive root if and only if one of these
conditions holds:

(a) D > 0 and z∗1 ≤ 0; (b) D = 0 and z∗2 ≤ 0; (c) D < 0 and z∗3 ≤ 0.

3. If s3 ≥ 0, then equation 9 has at least a positive root if and only if one of
these conditions holds:

(a) D > 0, z∗1 > 0, and h(z∗1) < 0; (b) D = 0, z∗2 > 0 and h(z∗2) < 0;
(c) D < 0 z∗3 ≤ 0 and h(z∗3) < 0.

Now, suppose that equation 9 have four postive real roots, given by z1, z2, z3, z4,
then equation 8 also have positive real roots, namely; ξ1 =

√
z1, ξ2 =

√
z2, ξ3 =√

z3, ξ4 =
√
z4.

From 2, we find the critical time delay τ0 as follows

τ jn =
1

ξ

[
arctan

{
−
ω
(
q0ω

6+(−q0p1−q2+p0q1)ω4+(−p0q3+q2p1−p2q1+q0p3)ω2+p2q3−q2p3
)

(q1−q0p0)ω6+(−q3+q2p0+q0p2−q1p1)ω4+(q3p1+q1p3−q2p2)ω2−q3p3

}
+jπ

]
,

(14)

where n = 1, 2, 3, 4, j = 0, 1, 2, .... Then (τ jn) are solutions of 6 and λ = ±iξn
are a pair of purely imaginary roots of 2 with τ = τ jn. We define

τ0 = τ 0n0
= min

1≤n≤4
{τ 0n}, ξ0 = ξn0 ,

where n0 ∈ {1, 2, 3, 4}. Then τ0 is the first value of τ such that 2 have purely
imaginary roots.
Let λ(τ) = α(τ) ± iξ(τ) be the root of 2, around τ = τ jn satisfying α(τ jn) =
0, ξ(τ jn) = ξ0(n = 1, 2, 3, 4, j = 0, 1, 2...).
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Lemma 3.3.
Suppose h

′
(zn) 6= 0 (n = 1, 2, 3, 4), where h(z) is defined by 9, then the following

transversality condition holds:

dRe{λ(τ)}
dτ

∣∣∣
τ=τ jn

6= 0. (15)

Moreover, the sign of dRe{λ(τ)}
dτ

∣∣∣
τ=τ jn

is consistent with that of h
′
(zn).

Theorem 3.1.
Suppose that A2 holds, we have the following:

1. The quasi-polynomial 2 have roots with negative real parts and the steady
state solution of system 1 is stable if s3 ≥ 0 and one of these conditions
holds:

(a) D > 0 and z∗1 ≤ 0; (b) D = 0 and z∗2 ≤ 0; (c) D < 0 and z∗3 ≤ 0.

2. The quasi-polynomial 2 have roots with negative real parts and the steady
state solution of system 1 is asymptotically stable if τ ∈ [0, τ0)0 for s3 < 0
or s3 ≥ 0 and one of these conditions holds:

(a) D > 0, z∗1 > 0, and h(z∗1) < 0; (b) D = 0, z∗2 > 0 and h(z∗2) < 0;
(c) D < 0 z∗3 ≤ 0 and h(z∗3) < 0.

3. If the conditions in (2.) hold and also h
′
(zn) 6= 0, then the system 1 have pe-

riodic solutions arising from the Hopf bifurcation at τ = τ jn(n = 1, 2, 3, 4, j =
0, 1, 2...).

In the figures below, we illustrate the above stability results and also numer-
ically compute real part of the leading eigenvalue of the characteristic equation
using traceDDE suite in MATLAB and plot the results in gnuplot. By varying the
natural clearance rate µ, we investigate how stability changes in the τ, ν plane,
and also the effects on the dynamical behaviour of the system.
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Figure 2: Stability charts: (a) µ = 0.1, (b) µ = 0.3, (c) µ = 0.5, (d) µ = 0.7.
The color in the figures corresponds to the real part of the leading eigenvalue of
the characteristic quasi-polynomial

From the figures above, we can see that µ played an important role in the dy-
namical behaviour of the system (1). The colors in the figures stand for: yellow
“most stable region”, red “more stable region”, dark-violet “stable region”, black
“critical line or Hopf region” and the remaining area (white) corresponds to “un-
stable region”. As µ increased, the dynamics of the system also increased in the
(τ, ν) plane. Again, we observed that change in γ has similar system dynamics as
above. Therefore, in general in the (τ, ν) plane, the overall dynamical behaviour
of the system is determined by the parameters µ and γ.

4 Numerical simulation
In this section, we present some numerical simulations using dde23 suit in

Matlab. We will show stable, periodic and unstable solutions as τ is varied. We
have stability switches from stable to periodic to unstable and to stable as τ takes
on the critical values τ0 or as τ crosses the imaginary axis. In the first simulation,
we take τ < τ0, and we have stable solutions (τ = 0.45, τ0 = 0.85).
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Figure 3: stable solutions and phase portrait of system 1 for τ = 0.45
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Figure 4: periodic solutions and phase portrait of system 1 for τ = 0.85
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Figure 5: Unstable solutions and phase portrait of system 1 for τ = 0.95

5 Conclusion
In this paper, we derived a mathematical model to break the life cycle of a

mosquito that incorporate a time delay at the larva stage that accounts for the
period of growth and development to pupa. We prove the local stability of the
system’s equilibrium and the critical values for Hopf bifurcation to occur. We
find that the model undergoes stability switching from stable to periodic and to
unstable when the time delay τ crosses the imaginary axis from the left half plane
to the right half plane in the (Re, Im) plane. That is, the system’s equilibrium
E∗ is stable if τ < τ0 (see figure 3), if τ = τ0, E∗ loses its stability and a Hopf
bifurcation occurs which means, a family of periodic solutions bifurcate from E∗

(see figure 4). And if τ > τ0, then E∗ is unstable as seen in figure 5.
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Abstract  

This paper deals with groups of transformations with finite number of 

isometries and extends previous studies (Casolaro, F. L. Cirillo and R. 

Prosperi 2015) which are related to endless groups of transformations with 

isometrics. In particular, isometries of the tetrahedron and cube, which 

turn these figures in itself, are presented.  
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1. Introduction 
 

Compared with the operation of product of isometries, in previous studies, 

we presented some examples of infinite groups of transformations, whose we 

highlighted the following properties: 
 

- The isometries of the space form a group.  

- The direct isometries of the space form a group, subgroup of the previous 

group. 

- The translations of the space form a group, subgroup of the group of direct 

isometries. 

- Rotations around a straight form a group, subgroup of direct isometries. 

- The helical movements all having the same axis form a group, subgroup of 

the group of direct isometries. In this case, since the helical movements turn 

out to be products of rotations for translations having the direction of the 

axis of rotation, also translations (the rotation is reduced to the identity) and 

rotations (the translation is reduced to the identity) may be considered 

helical movements.  
 

It is also possible to obtain groups of transformation with a finite number of 

isometries. 

In particular: about the tetrahedron, we show the axial symmetry μ having as 

an axis line r, rotations ρ of 120 ° and 240 ° around the height of the tetrahedron 

outgoing from a fixed vertex, planar symmetry σ relative to the plan π passing 

through two vertices of the tetrahedron and through the midpoint of the edge 

that joins the other two vertices; about the cube, rotations ρ around a line r 

connecting the centers of two opposite faces, rotations ρ around the line r 

joining the midpoints of two opposite edges, planar symmetry σ relative to the 

plan π passing through two vertices of the tetrahedron and through the midpoint 

of the edge that joins the other two vertices, planar symmetry σ relative to the 

pane π parallel to two faces passing through the midpoints of the four edges 

perpendicular to these two faces, planar symmetries σ relative to the pane π 

passing through two opposite edges that do not have face in common and a 

vertex in common. 
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Figure 1 

 
Consider three straight lines x, y, z, passing through the same point O and 

perpendicular to each other two by two. The three planes α, β, γ, respectively 

determined by the straight lines x and y, x and z, and y and z, are also perpendicular to 

each other two by two (Figure 1). 

 
Let be: 

 
 I   the identity, 
sx  the axial symmetry having as an axis the line x, 
sy  the axial symmetry having as an axis the line y, 
sz  the axial symmetry having as an axis the line z, 
sα the planar symmetry relative to the plane α, 

sβ  the planar symmetry relative to the plane β, 

sγ  the planar symmetry relative to the plane γ, 

so  the symmetry with center O, 
 
It occurs that these eight isometries form a group. For this purpose, it is sufficient to 

prove that the product of any two of them is still one of the eight indicated isometries. 

 

2. Tetrahedron’s Isometries 
 

Other examples of finite groups of isometries can be obtained considering all the 

isometries which leave fixed a given figure F, that is, such that in each of them F is 

united (F is transformed into itself). ABCD and A'B'C'D 'are two congruent tetrahedra. 

Then there exists one and only one isometry that transforms the vertices A, B, C, D 

neatly in the vertices A ', B', C ', D' (Figure 2). This isometry is direct or reverse 

depending on whether or not the two tetrahedra are equally oriented. 
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Figure 2 

 
Isometries that turn a tetrahedron T into itself are 24 (twenty-four). They form a 

group ST , obviously isomorphic to the group S4 of the 24 permutations on four letters 

A, B, C, D. 
Among the isometries ϕ that transform the tetrahedron T into itself, we present the 

following: 
a) The axial symmetry μ having as an axis the straight line r, joining the midpoints of 

two opposite sides (bimedian), is a rotation of 180 ° around the straight line r. 

The symmetries of this type present in the group are 3 (as many as the pairs of 

opposite sides of the tetrahedron); they have evidently period 2. Therefore there 

are 3 axial symmetries that leave T globally invariant, as many as the pairs of 

opposite sides. 
A substitution is associated with each of these symmetries (M. Impedovo 1998). 
- With symmetry μ1 about the line r1 joining the midpoints of the sides AB and 

CD, the following substitution is associated: 

 

 
 

- With symmetry μ2 about the line r2 joining the midpoints of the sides AC e BD 

the following substitution is associated:  

 

 
 

- With symmetry μ3 about the line r3 joining the midpoints of the sides AD e BC 
the following substitution is associated:  

 

 
 



Groups of Transformations with a Finite Number of Isometries: the Cases of 

Tetrahedron and Cube 

97 

 

b) The rotations ρ of 120 ° and 240 ° around the height of the tetrahedron outgoing 

from a fixed vertex. For each height of the tetrahedron, you have two rotations of 

period 3 which hold the summit fixed. Since the tetrahedron heights are 4, these 

rotations are 8; therefore, there are 8 rotations of this type which transform T into 

itself, two for each height of the tetrahedron. 
A substitution is associated with each of these rotations. 
- With rotation ρ1 about the height outgoing from A the following substitution 

is associated:  
 

  relative to the amplitude of 120° 
 

 relative to the amplitude of 240° 
 

- With rotation ρ3 about the height outgoing from B the following substitution 

is associated:  
 
 

  relative to the amplitude of 120° 
 

  relative to the amplitude of 240° 
 

- With rotation ρ5 about the height outgoing from C the following substitution 

is associated:  
 
 

  relative to the amplitude of 120° 
 

  relative to the amplitude of 240° 
 

- With rotation ρ7 about the height outgoing from D the following substitution 

is associated:  



Ferdinando Casolaro, Luca Cirillo, Raffaele Prosperi 

98 

 

 

     relative to the amplitude of 120° 
 

              relative to the amplitude of 240° 
 
c) The planar symmetry σ relative to the plan π passing through the two vertices of 

the tetrahedron and the midpoint of the edge that joins the other two vertices. The 

σ symmetry σ is uniquely determined by the initial vertex. The symmetries of this 

type are 6 (as many as the pairs of vertices of the tetrahedron), and have period 2. 

 
A substitution is associated with each of these symmetries  

- With symmetry about the plane ABM1, with M1 medium point of CD, the 

following substitution is associated: 

 

 
 

- With symmetry about the plane ACM2, with M2 medium point of BD, the 

following substitution is associated: 

 

 
 

- With symmetry about the plane ADM3, with M3 medium point of BC, the 

following substitution is associated: 

 

 
 

- With symmetry about the plane BCM4, with M4 medium point of AD, the 

following substitution is associated: 
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- With symmetry about the plane BDM5, with M5 medium point of AC, the 

following substitution is associated: 

 

 
 

- With symmetry about the plane CDM6, with M6 medium point of AB, the 

following substitution is associated: 

 

 
 

It is observed that the two sets of isometries described in points a) and b) 

each supplemented with the identity 
 

 
are closed about to the product. 
The first set is a G1 group of order 4 of involutorie transformations. The second 

set is a G2 group of order 9 of periodic transformations of order 3. 

The union of the two groups is a G3 group of order 12, which is the group of direct 

isometries of T. 

 
We will now examine the product of three symmetries, or we will fix an isometry σk 

of type c) (planar symmetry), and we will consider an isometry αt (t = 1, 2, … , 12) 

variable in the G3 group. The product σk º αt is still an isometry that changes the 

tetrahedron T into itself. 

 

They are in number of 12; in fact, if we fix, for example, the isometry  

 

 
 

 multiplying each isometry of the G3 Group for σ1, we will get 12 reverse 

isometries reverse, which can be summarized as: 
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It is easily seen that it results: 
 

ϕ 12 = σ 1 ,   ϕ 5 = σ 2 ,   ϕ 4 = σ 3 ,   ϕ 7 = σ 4 ,   ϕ 6 = σ 5 ,   ϕ 1 = σ 6 
 

That is the 12 isometries σk º αt are given by the 6 planar symmetries σk of the type c) 

and by the 6 antirotations ϕ k, with period 4. The isometries ϕ k do not take firm no 

vertex and no edge of the tetrahedron. 

In summary, we can say that the three axial symmetries of the G1 group, the 8 

rotations of the G2 group, the 6 planar symmetries, the 6 latest found isometries, along 

with the identity, are the 24 isometries that leave the tetrahedron T globally invariant; 

their set is the ST group of isometries of T. 
ST is the group of isometries that change the tetrahedron T in itself. 
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3. Isometries of Cube 
 

Some examples of finite groups of isometries can be had considering all isometries 

leaving globally invariant a cube (A. Morelli, 1989). 
ABCDEFGH e A’B’C’D’E’F’G’H’ are two equal cubes. Then there exists one and only 

one isometry that transforms the vertices A, B, C, D, E, F, G, H, neatly in the vertices 

A’, B’, C’, D’, E’, F’, G’, H’ (Figure 3). This isometry is direct or reverse depending 

on whether or not the two cubes are equally oriented. 

  

 
Figure 3 

 

Isometries that transform a C cube to itself are forty eight. They forming a Sc 

group evidently isomorphic to S8 group of forty eight permutations on eight 

letters A, B, C, D, E, F, G, H. 

Among the isometries that transform the C Cube itself there are obviously 

the following: 

a) The rotations around a straight line r which joins the centers of two 

opposite faces. 

Since the faces of the cube are six, these lines are three; for each of these 

straight lines the cube is transformed into itself by the amplitude rotations, 

respectively, 90°, 180°, 270°. 

Therefore you have nine rotations of this type which transform C itself. 

For each of these rotations it is associated a substitution. 

- To 1 rotation around the straight through M1M2, with M1 the center of 

the ABCD face and M2 the center of the EFGH face, is associated the 

substitution: 

 










EHGFCBAD

HGFEDCBA

       

       
:1   relative to the amplitude of 90° 
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








FEHGBADC

HGFEDCBA

       

       
:2  relative to the amplitude of 180° 

 










GFEHADCB

HGFEDCBA

       

       
:3   relative to the amplitude of 270° 

 

- To 4 rotation around the straight through M3M4, with M3 the center of 

the ABFE face and M4 the center of the DCGH face, is associated the 

substitution: 

 










AHEDCFGB

HGFEDCBA

       

       
:4  relative to the amplitude of 90° 

 










BADCFEHG

HGFEDCBA

       

       
:5   relative to the amplitude of 180° 

 










GBCFEDAH

HGFEDCBA

       

       
:6   relative to the amplitude of 270° 

 

- To 7 rotation around the straight through M5M6, with M5 the center of 

the AEHD face and M6 the center of the BFGC face,  is associated the 

substitution: 

 










EFCDABGH

HGFEDCBA

       

       
:7   relative to the amplitude of 90° 

 










DCBAHGFE

HGFEDCBA

       

       
:8    relative to the amplitude of 180° 

 










ABGHEFCD

HGFEDCBA

       

       
:9    relative to the amplitude of 270° 

 

b) The rotations  around the straight line r that connects the midpoints of two 

opposite edges. Since the edges of the cube are twelve, these lines are six; for 
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each of these straight lines the cube is transformed into itself by rotations of 

180 ° amplitude. 

For each of these rotations it is associated a substitution. 

- To rotation 10 around the straight line joining the midpoints of AB and 

EF edges, is associated the substitution: 

 

- 










DCFEHGBA

HGFEDCBA

              

               
:10

  

- To rotation 11 around the straight line joining the midpoints of CD and 

HG edges, is associated the substitution: 

 










HGBADCFE

HGFEDCBA

              

              
:11  

 

- To rotation 12 around the straight line joining the midpoints of BC and 

HE edges, is associated the substitution: 

 

- 










HADEFCBG

HGFEDCBA

              

              
:12

  

- To rotation 13 around the straight line joining the midpoints of AD and 

FG edges, is associated the substitution: 

 










BGFCDEHA

HGFEDCBA

              

               
:13  

 

- To rotation 14 around the straight line joining the midpoints of BC and 

HE edges, is associated the substitution: 

 

- 










DADEFCBG

HGFEDCBA

              

               
:14

  

- To rotation 15 around the straight line joining the midpoints of AD and 

FG edges, is associated the substitution: 
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










BGFCDEHA

HGFEDCBA

              

               
:15

 

 

c) The rotations  around the straight line r that contains a diagonal. The number 

of se lines is four; for each of these straight lines the cube is transformed into 

itself by the amplitude rotations respectively 120° and 240°. Therefore there 

are eight rotations of this type which transform C to itself. 

For each of these rotations it is associated a substitution. 

- To rotation 16 around the diagonal AF, it is associated the substitution: 

 










FCDEHABG

HGFEDCBA

              

               
:18  relative to the amplitude of 120° 

 










DAHEFGBC

HGFEDCBA

              

               
:19  relative to the amplitude of 240° 

 

- To rotation 18 around the diagonal BE, it is associated the substitution: 

 










FCDEHABG

HGFEDCBA

              

               
:18  relative to the amplitude of 120° 

 










DAHEFGBC

HGFEDCBA

              

               
:19  relative to the amplitude of 240° 

 

- To rotation 20 around the diagonal CH, it is associated the substitution: 

 










HEDABCFG

HGFEDCBA

              

               
:20  relative to the amplitude of 120° 

 










HABGFCDE

HGFEDCBA

              

               
:21  relative to the amplitude of 240° 

 

- To rotation 21 around the diagonal DG, it is associated the substitution: 
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








BGHADEFC

HGFEDCBA

              

               
:22   relative to the amplitude of 120° 

-  










FGBCDAHE

HGFEDCBA

              

               
:23  relative to the amplitude of 240° 

d) The planar symmetry with respect to  plane parallel to two faces through 

the midpoints of the four edges perpendicular to these two faces. The 

symmetries of the type indicated are three. 

For each of these symmetries it is associated a substitution. 

 

- At the planar symmetry 1 with respect to the plane 1 parallel to ABGH 

and EFCD faces, is associated the substitution: 

 

- 










EFGHABCD

HGFEDCBA

              

               
:1

  

- At the planar symmetry 2 with respect to the plane 2 parallel to ABDC 

and HGEF faces, is associated the substitution: 

 












ABCDEFGH

HGFEDCBA

              

               
:2

 
 

- At the planar symmetry  with respect to the plane 3 parallel to BCGH 

and ADHE faces, is associated the substitution: 

 

- 












ABCDEFGH

HGFEDCBA

              

               
:3

 
 

e) The symmetries with respect to the  plan through two opposite edges that 

do not have common face and vertex. The symmetries of the type indicated 

are six. 

For each of these symmetries it is associated a substitution. 

 

- At the planar symmetry 4 respect to the 4 plan through the edges AD and 

GF is associated with the substitution: 
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- 










BGFCDEHA

HGFEDCBA

              

               
:4

  

- At the planar symmetry 5 respect to the 5 plan through the edges BC and 

HE is associated with the substitution: 

 

- 










HADEFCBG

HGFEDCBA

              

               
:5

  

- At the planar symmetry 6 respect to the 6 plan through the edges AB and 

EF is associated with the substitution: 

 

          









DCFEHGBA

HGFEDCBA

              

               
:6  

 

- At the planar symmetry 7 with respect to the 7 plan through the edges 

CD and HG  is associated with the substitution: 

 

- 










HGBADCFE

HGFEDCBA

              

               
:7

  

- At the planar symmetry 8 with respect to the 8 plan through the edges 

AH and CF is associated with the substitution: 

 










HEFGBCDA

HGFEDCBA

              

               
:8

 
 

- At the planar symmetry 9 with respect to the 9 plan through the edges 

BG and DE is associated with the substitution: 

 

 










FGHEDABC

HGFEDCBA

              

               
:9

 
 

Note that the two sets of isometry described in points a), b) and c), each 

supplemented with the identity: 
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








HGFEDCBA

HGFEDCBA
I

              

               
:

, 

are closed with respect to the product. 

The first set G1 is a group of order ten, the second set is a group G2 of order 

seven, the third set is a group G3 of order nine. The union of these three groups 

is a G4 group of order twenty four which constitutes the group of direct 

isometries of C. 

Let us now examine the product of three symmetries, that is fix an type d) 

isometry k (planar symmetry), and consider an isometry t (t = 1, 2, ..., 24) 

variable in the G4 group. The product k t is still an isometry which changes 

the C Cube to itself. 

The number of these product is twenty four; in fact, it fixed eg. the isometry 










EFGHABCD

HGFEDCBA

        

        
:1 , 

multiplying each isometry of the G4 group , you get twentyfour reverse 

isometries, which can be summarized as: 

 

             









FGHEDABC

HGFEDCBA

              

              
:111   , 

  

 










GHEFCDAB

HGFEDCBA

              

              
:221   , 

 

 










HEFGBCDA

HGFEDCBA

              

              
:331   , 

  

 










DEHABGFC

HGFEDCBA

              

              
:441   , 

 

 










CDABGHEF

HGFEDCBA

              

              
:551   ,  

 

 









FCBGHADE

HGFEDCBA

              

              
:661   , 
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









DCFEHGBA

HGFEDCBA

              

              
:771   ,  

 

 









ABCDEFGH

HGFEDCBA

              

              
:881   , 

 

 










HGBADCFE

HGFEDCBA

              

              
:991   ,  

 

 









EFCDABGH

HGFEDCBA

              

              
:10101   , 

 

 










EBGHEFCD

HGFEDCBA

              

              
:11111   ,  

 

 









EDAHGBCF

HGFEDCBA

              

              
:12121   , 

 

 










CFGBAHED

HGFEDCBA

              

              
:13131   , 

 

 









EDAHGBCF

HGFEDCBA

              

              
:14141   , 

 

 










CFGBAHED

HGFEDCBA

              

              
:15151   , 

 

 









GFCBADEH

HGFEDCBA

              

              
:16161   , 

 

 










CFEDAHGB

HGFEDCBA

              

              
:17171   ,  

 

 









EDCFGBAH

HGFEDCBA

              

              
:18181   , 
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









EHADCBGF

HGFEDCBA

              

              
:19191   , 

 

 









ADEHGFCB

HGFEDCBA

              

              
:20201   , 

 

 










GBAHEDCF

HGFEDCBA

              

              
:21211   , 

  

 









AHGBCFED

HGFEDCBA

              

              
:22221   , 

 

 










CBGFEHAD

HGFEDCBA

              

              
:23231   ,  

 

 









EFGHABCD

HGFEDCBA
I

              

              
:241   . 

 

It is easily seen that results: 

 24 =  1 ,  8 =  2 ,  2 =  3 ,  7 =  6 ,  9 = 7 ,  3 =  8 ,  1 =  9  

that is, the twentyfour isometries k t are given from nine symmetries k 

planar type d), e), and fifteen anti rotations k. 

In summary therefore it can be said that the twenty three rotations of the G4 

group, the nine planar symmetries and the latest isometries found, along with 

the identity, are the forty eight isometries which leave the cube C globally 

invariant; their set is the SC group of isometries of the cube C. 

SC is the group of the isometries that change C cube to itself.    

 

Conclusions 

As already shown in a previous work (Casolaro, F., Cirillo, L. and Prosperi, 

R. 2015), the geometric Universe is three-dimensional, so the transformations 

taking place in it are generated in space. Then, we believe, for a correct analysis 

of the physical phenomena that occur in the universe, that it is essential to the 

knowledge of the real transformations that take place in it. Recent results of 

other branches of mathematics, in particular the modern algebra, have 
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highlighted the interrelationships between movements in the plane and in space 

with some properties of the Theory of Groups (Casolaro, F. 1992), for which we 

consider essential to the deepening of these issues both in education and in the 

field of pure research (Casolaro, F. and Eugeni, F. 1996). Unfortunately, 

teaching (Casolaro F. 2014) in both the Secondary School that the University 

has been anchored to old programs that do not take into account the development 

of mathematics in the last 150 years, so we hope that this work will stimulate 

teachers and researchers to expand their views. 
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