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Abstract

In this paper, we propose a delayed mathematical model to break the life
cycle of anopheles mosquito at the larva stage by incorporating a time delay
τ at the larva stage that accounts for the period of growth or development
to pupa. We prove local stability of the system’s equilibrium and find the
critical values for Hopf bifurcation to occur. Also, we find that the system’s
equilibrium undergoes stability switching from stable to periodic to unstable
and vice versa when the time delay τ crosses the imaginary axis from the left
half plane to the right half plane in the (Re, Im) plane. Finally, we perform
some numerical simulations and the results agree well with the analytical
analysis. This is the first time such a model is proposed.
Keywords: Delayed model; Anopheles mosquito; Malaria Control; Hopf
bifurcation; Larva; Stability analysis
2010 AMS subject classifications: 97U99.
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1 Introduction
Every year, one to three million deaths is attributed to malaria parasite in sub-

Saharan Africa out of which one third are children. Much work has been done
to genetically modify mosquitoes in the laboratory to hinder the parasite from
transmission thus, making the mosquitoes refractory. This can be achieved by
inserting of genes at appropriate site to create stable germline. The progress in
this area is fairly recent.

Malaria is a killer disease, is one of the leading causes of death in many parts
of the world. Its devastating effect has persisted for many decades. Despite the
longevity of the disease, malaria, which has been brought under control in some
developed countries, still constitutes a major health menace in many developing
countries, where most areas of high endemic reside. Some African countries, es-
pecially countries within sub-Saharan Africa, still feature among the leading areas
of high malaria endemic in the world [21]. According to World Health Organiza-
tion report [34], an estimated of about 225 million malaria clinical cases occurred
in 2009, with an estimated 781,000 malaria mortalities. Although these statistics
reflect a reduction compared to an estimated 243 million malaria cases, with an
estimated 863,000 malaria deaths, 89% of which occurred in Africa in 2008 [35],
the reduction is not sufficient. Generally, susceptibility to malaria is universal,
that is, any person living in a country where malaria is prevalent is at risk of con-
tracting the disease. However, the impact of malaria is greatest amongst children
below five [36], where one in every five childhood deaths is due to the effects
of the disease, among pregnant women, and among people from non-malarious
regions.

Temperature is known to affect the life stages of the mosquito parasite [3].
There is a general consensus that future changes in climate may alter the preva-
lence and incidence of malaria; however, there are conflicting views among au-
thors [20], [39], [40], [11]. However, some authors argued that climate and ecol-
ogy are the main factors the severity of malaria and the difficulty in controlling
it [12]. Other factors that have led to difficulties in controlling malaria are socio-
economic conditions, population growth, urbanization, drug resistance, deficien-
cies in health care systems, poor sanitation, lack of information and education,
water storage, garbage disposal, unpaved roads, and drainage systems that gen-
erate good breeding stagess for malaria transmission close to human settlements
[14], [23], [32]. Thus, research in malaria that integrates the disease dynamics
with breeding sites/life cycle properties of the vector and the different develop-
mental stages of the parasite may provide novel insights toward disease control
and eradication.

Although malaria is deadly, it can be cured by administering anti-malaria
drugs. However, in endemic regions, the malaria parasite develops resistance to
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such drugs and there is no effective vaccine for malaria. Consequently, prevention
is the only other option. Prevention can be achieved through the use of prophylac-
tic drugs and vector control strategies. To advance, plan, design, and implement
effective or better vector control measures, a clear understanding of mosquito pop-
ulation dynamics, the disease dynamics, and mosquito interaction with the human
population is necessary. We introduce a new approach to the development of mod-
els for malaria transmission, wherein the mosquito vector is placed at the centre
of the transmission process. Our objective is to develop a mathematical model for
the dynamics of malaria transmission that takes into consideration the population
dynamics of the malaria vector and how these vectors interact with the human
population. To do that, an understanding of the vector population demography
and dynamics is needed.

The malaria vector undergoes a complete metamorphosis, as it passes through
four different life stages in its cycle: egg, larva, pupa and adult. The egg, larva and
pupa stages are aquatic, while the adult stage is terrestrial. The entire cycle from
egg laying to the emergence of the adult mosquito takes approximately 7-20 days,
with 2-3 days spent in the egg stage, 4-10 days spent in the larva stage, and 2-4
days spent in the pupa stage [14]. While the average life span of the adult female
mosquito ranges from 2-3 weeks, that of the males is approximately one week.
As for the first three life stages, the life span of the adult mosquito depends on
the species and ambient temperature. In addition to natural factors, survival of the
adult female Anopheles mosquito also depends on its success in acquiring blood
meals from humans. Therefore, in this research we propose a delayed model to
break the life cycle at larva stage. To this end, we introduce a time delay τ at the
larva compartment to account for the control measures (this can be bio-organism
eg copecods or chemical substances). This is the firt such a delayed model is
proposed.

2 Model derivation
In this section, we derive the delayed model from the life cycle of anopheles

mosquito following the approached used in the paper by [22]. We make the fol-
lowing assumptions: The total population of anopheles mosquito is sub-divided
into four compartments (Adults, Eggs, Larva, and Pupa). The birth rate b is con-
stant and proportional to the total population b, there is a time delay τ in the
growth or development to pupa at the larva stage cause by the introduction of con-
trol measures (can be natural enemy e.g bio-organisms or chemical substances)
that can slow the growth process. Anopheles mosquito are assumed to transmit
malaria only through direct contact.
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Figure 1: A flow chart of the life cycle of a mosquito

From the model assumptions and the flow chart in figure (1) above, we de-
rive the following model. Let x1(t), x2(t), x3(t), x4(t) be the number of Adult
mosquitoes, Eggs, Larva, and Pupa at time t respectively. Then, the life cycle of
anopheles mosquito is represented by the following model:

ẋ1(t) = bN − (η + µ)x1(t) + ρx4(t)
ẋ2(t) = ηx1(t)− (γ + µ)x2(t)
ẋ3(t) = γx2(t)− νx3(t− τ)− µx3(t)
ẋ4(t) = νx3(t− τ)− (ρ+ µ)x4(t)

(1)

where b is the natural birth rate, η is the rate at which adult mosquitoes oviposit, µ
is the natural death rate, γ is the rate at which the eggs hatch, ν is the rate at which
larva develops to pupa, ρ is the rate at which pupa develops to adult mosquitoes.
The initial data are x1(θ) = φ1(θ), x2(θ) = φ2(θ), x3(θ) = φ3(θ), x4(θ) = φ4(θ))
for τ ∈ [−τ, 0], where φ = (φ1, φ2, φ3, φ4)

T ∈ C([−τ, 0],R4) such that φi ≥
0, i = 1, 2, 3, 4.
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3 Local stability analysis
It is obvious that model (1) has a trivial equilibrium E0 = (bN/µ, 0, 0, 0) and

a unique positive non-trivial equilibrium E∗ = (x∗1, x
∗
2, x
∗
3, x
∗
4), where

x∗1 =
b[(ρ+ µ)(ν + µ)N + ρν]

(η + µ)(ρ+ µ)(ν + µ)− ρνγη
, x∗2 =

ηx∗1
γ + µ

,

x∗3 =
γηx∗1 + b

ν + µ
, x∗4 =

ν(γηx∗1 + b)

(ν + µ)(ρ+ µ)
.

The characteristic polynomial equation for the linearised system 1 is

λ4 + p0λ
3 + p1λ

2 + p2λ+ p3 + (q0λ
3 + q1λ

2 + q2λ+ q3)e
−λτ = 0, (2)

where

p0 = 4µ+ ρ+ γ + η,
p1 = µ (ρ+ γ + η + 3µ) + 2 η µ+ η γ + 3µ2 + η ρ+ 2µ ρ+ γ ρ+ 2µ γ,
p2 = µ (2 η µ+ η γ + 3µ2 + η ρ+ 2µ ρ+ γ ρ+ 2µ γ) + η γ ρ+ µ3

+µ γ ρ+ µ2ρ+ η µ2 + µ2γ + η µ ρ+ η γ µ,
p3 = µ (η γ ρ+ µ3 + µ γ ρ+ µ2ρ+ η µ2 + µ2γ + η µ ρ+ η γ µ) ,
q0 = ν, q1 = ν (ρ+ γ + η + 3µ) ,
q2 = ν (µ (ρ+ γ + η + 2µ) + γ ρ+ µ γ + η µ+ η ρ+ µ2 + µ ρ+ η γ) ,
q3 = ν µ (γ ρ+ µ γ + η µ+ η ρ+ µ2 + µ ρ+ η γ) .

(3)
If τ = 0 the characteristic equation 2 becomes

λ4 + (p0 + q0)λ
3 + (p1 + q1)λ

2 + (p2 + q2)λ+ (p3 + q3) = 0. (4)

By Routh-Hurwitz condition, we have the following necessary and sufficient con-
ditions for 4 to have roots with negative real part

H1 = p0 + q0 > 0
H2 = (p0 + q0)(p1 + q1)− (p2 + q2) > 0
H3 = (p0 + q0)[(p1 + q1)(p2 + q2)− (p0 + q0)(p3 + q3)]− (p2 + q1)

2 > 0
H4 = p3 + q3 > 0.

(5)

Hi > 0, i = 1, 2, 3, 4. (A2)
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Lemma 3.1.
If A2 is satisfied, then the characteristic equation 4 have roots with negative real
part.

The above result is true only when τ = 0.

Now if τ > 0, we let λ = iξ (ξ > 0) be a root of the characteristic equation 2,
then

ξ4 − ip0ξ3 − p1ξ2 + ip2ξ + p3 + (−iq0ξ3 − 2q1ξ
2 + iq2ξ + q3)(cos(ξτ)− i sin(ξτ)) = 0.

(6)
Separating equation 6 into real and imaginary parts we have

ξ4 − p1ξ2 + p3 = (q1ξ
2 − q3) cos (ξ (τ)) + (q0ξ

3 − q2ξ) sin (ξ (τ)) ,
−p0ξ3 + p2ξ+ = (q0ξ

3 − q2ξ) cos (ξ (τ))− (q1ξ
2 − q3) sin (ξ (τ)) .

(7)

Squaring both sides of 7 and adding we have the following

ξ8 + s0ξ
6 + s1ξ

4 + s22 + s3 = 0, (8)

where s0 = p0
2 − q02 − 2 p1, s1 = 2 p3 + p1

2 + 2 q0q2 − q12 − 2 p0p2,
s2 = −2 p1p3 + 2 q1q3 + p2

2 − q22, s3 = p3
2 − q32. Let z = ξ2, then

z4 + s0z
3 + s1z

2 + s2z + s3 = h(z). (9)

From 9
dh(z)

dz
= 4z3 + 3s0z

2 + 2s1z + s2 = g(z). (10)

Let y = z + s0
4

then g(z) = 0,

⇒ y3 + ay + b = 0, (11)

where a =
8s0−3s20

16
, b =

s30−4s0s1+8s2
32

.
By Cardano’s theorem, we have

Q =
24s1−9s20

144

R =
216s0s1−432s2−54s30

3456

D = Q3 +R2

K1 =
3
√
R +
√
D

K2 =
3
√
R−
√
D

(12)

and then
z1 = K1 +K2 − s0

4

z2 = −K1+K2

2
− 3s0

12
+ i
√
3

2
(K1 −K2)

z3 = −K1+K2

2
− 3s0

12
− i
√
3

2
(K1 −K2)

(13)
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Assume that D > 0, then the equation g(z) = 0 has one real root namely;
z∗1 = z1 and two complex conjugates, if D = 0, then all roots of g(z) = 0 are
real and at least two are equal, namely; z1, z2 = z3, where z∗2 = max{z1, z2}, if
D < 0, then all roots of g(z) = 0 are real and distinct, namely; z1, z2, z3, where
z∗3 = max{z1, z2, z3}.

According to Lemma 2.2 in Li and Hu [38], we have the following

Lemma 3.2.
1. If s3 < 0, then equation 9 has at least one positive root.

2. If s3 ≥ 0, then equation 9 has no positive root if and only if one of these
conditions holds:

(a) D > 0 and z∗1 ≤ 0; (b) D = 0 and z∗2 ≤ 0; (c) D < 0 and z∗3 ≤ 0.

3. If s3 ≥ 0, then equation 9 has at least a positive root if and only if one of
these conditions holds:

(a) D > 0, z∗1 > 0, and h(z∗1) < 0; (b) D = 0, z∗2 > 0 and h(z∗2) < 0;
(c) D < 0 z∗3 ≤ 0 and h(z∗3) < 0.

Now, suppose that equation 9 have four postive real roots, given by z1, z2, z3, z4,
then equation 8 also have positive real roots, namely; ξ1 =

√
z1, ξ2 =

√
z2, ξ3 =√

z3, ξ4 =
√
z4.

From 2, we find the critical time delay τ0 as follows

τ jn =
1

ξ

[
arctan

{
−
ω
(
q0ω

6+(−q0p1−q2+p0q1)ω4+(−p0q3+q2p1−p2q1+q0p3)ω2+p2q3−q2p3
)

(q1−q0p0)ω6+(−q3+q2p0+q0p2−q1p1)ω4+(q3p1+q1p3−q2p2)ω2−q3p3

}
+jπ

]
,

(14)

where n = 1, 2, 3, 4, j = 0, 1, 2, .... Then (τ jn) are solutions of 6 and λ = ±iξn
are a pair of purely imaginary roots of 2 with τ = τ jn. We define

τ0 = τ 0n0
= min

1≤n≤4
{τ 0n}, ξ0 = ξn0 ,

where n0 ∈ {1, 2, 3, 4}. Then τ0 is the first value of τ such that 2 have purely
imaginary roots.
Let λ(τ) = α(τ) ± iξ(τ) be the root of 2, around τ = τ jn satisfying α(τ jn) =
0, ξ(τ jn) = ξ0(n = 1, 2, 3, 4, j = 0, 1, 2...).
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Lemma 3.3.
Suppose h

′
(zn) 6= 0 (n = 1, 2, 3, 4), where h(z) is defined by 9, then the following

transversality condition holds:

dRe{λ(τ)}
dτ

∣∣∣
τ=τ jn

6= 0. (15)

Moreover, the sign of dRe{λ(τ)}
dτ

∣∣∣
τ=τ jn

is consistent with that of h
′
(zn).

Theorem 3.1.
Suppose that A2 holds, we have the following:

1. The quasi-polynomial 2 have roots with negative real parts and the steady
state solution of system 1 is stable if s3 ≥ 0 and one of these conditions
holds:

(a) D > 0 and z∗1 ≤ 0; (b) D = 0 and z∗2 ≤ 0; (c) D < 0 and z∗3 ≤ 0.

2. The quasi-polynomial 2 have roots with negative real parts and the steady
state solution of system 1 is asymptotically stable if τ ∈ [0, τ0)0 for s3 < 0
or s3 ≥ 0 and one of these conditions holds:

(a) D > 0, z∗1 > 0, and h(z∗1) < 0; (b) D = 0, z∗2 > 0 and h(z∗2) < 0;
(c) D < 0 z∗3 ≤ 0 and h(z∗3) < 0.

3. If the conditions in (2.) hold and also h
′
(zn) 6= 0, then the system 1 have pe-

riodic solutions arising from the Hopf bifurcation at τ = τ jn(n = 1, 2, 3, 4, j =
0, 1, 2...).

In the figures below, we illustrate the above stability results and also numer-
ically compute real part of the leading eigenvalue of the characteristic equation
using traceDDE suite in MATLAB and plot the results in gnuplot. By varying the
natural clearance rate µ, we investigate how stability changes in the τ, ν plane,
and also the effects on the dynamical behaviour of the system.
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Figure 2: Stability charts: (a) µ = 0.1, (b) µ = 0.3, (c) µ = 0.5, (d) µ = 0.7.
The color in the figures corresponds to the real part of the leading eigenvalue of
the characteristic quasi-polynomial

From the figures above, we can see that µ played an important role in the dy-
namical behaviour of the system (1). The colors in the figures stand for: yellow
“most stable region”, red “more stable region”, dark-violet “stable region”, black
“critical line or Hopf region” and the remaining area (white) corresponds to “un-
stable region”. As µ increased, the dynamics of the system also increased in the
(τ, ν) plane. Again, we observed that change in γ has similar system dynamics as
above. Therefore, in general in the (τ, ν) plane, the overall dynamical behaviour
of the system is determined by the parameters µ and γ.

4 Numerical simulation
In this section, we present some numerical simulations using dde23 suit in

Matlab. We will show stable, periodic and unstable solutions as τ is varied. We
have stability switches from stable to periodic to unstable and to stable as τ takes
on the critical values τ0 or as τ crosses the imaginary axis. In the first simulation,
we take τ < τ0, and we have stable solutions (τ = 0.45, τ0 = 0.85).
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Figure 3: stable solutions and phase portrait of system 1 for τ = 0.45
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Figure 4: periodic solutions and phase portrait of system 1 for τ = 0.85
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Figure 5: Unstable solutions and phase portrait of system 1 for τ = 0.95

5 Conclusion
In this paper, we derived a mathematical model to break the life cycle of a

mosquito that incorporate a time delay at the larva stage that accounts for the
period of growth and development to pupa. We prove the local stability of the
system’s equilibrium and the critical values for Hopf bifurcation to occur. We
find that the model undergoes stability switching from stable to periodic and to
unstable when the time delay τ crosses the imaginary axis from the left half plane
to the right half plane in the (Re, Im) plane. That is, the system’s equilibrium
E∗ is stable if τ < τ0 (see figure 3), if τ = τ0, E∗ loses its stability and a Hopf
bifurcation occurs which means, a family of periodic solutions bifurcate from E∗

(see figure 4). And if τ > τ0, then E∗ is unstable as seen in figure 5.

References
[1] J. L. Aron, Mathematical Modeling of Immunity to Malaria, Mathematical

Biosciences 90, 385-396 (1988). 32

[2] T. J. N. Bailey, The Mathematical Theory of Infectious Diseases and its Ap-
plication, (Griffin, London, 1975), 2nd edition.

[3] L. A. Baton and L. C. Ranford-Cartwright, Spreading the Seeds of Million-
murdering Death: Metamorphoses of Malaria in the Mosquito, Trends in
Parasitology 21, 573-580 (2005).

[4] Bates, M., The natural history of mosquitoes, The Macmillan Company,
New York. pp 379 (1949).

89



Muhammad A. Yau and Bootan Rahman

[5] Beltrami, E, Mathematics for dynamic modeling, Academic Press. N.Y
(1989).

[6] C. C. Carlos, Malaria: In Infectious Diseases, (J. B. Lipincolt Company,
Philadelphia, (1989).

[7] Coetzee M, Distribution of the African malaria vectors of the Anopheles
gambiae complex, American Journal of tropical medicine and hygiene, 70
(2):103-104 (2004).

[8] Davidson, G, Estimation of the population of Anopheline Mosquito,
nature,174:792-793 (1954).

[9] K. Dietz, L. Molineaux, and A. Thomas, A Malaria Model Tested in the
Africa Savanna, Bull of World Hearlth Organization 50, 347-357 (1974). 32

[10] C. Faraj, S. Ouahbi, E. Adlaoui, D. Boccolini, R. Romi, and R. E. Aouad,
Risque de Reemergence du Paludisme au Maroc. Etude de la Capacite Vec-
torielle d’Anopheles Labranchiae dans une Zone Rizicole au Nord du Pays,
Parasite 15, 605-610 (2008).

[11] K. L. Gage, T. R. Burkot, R. J. Eisen, and E. B. Hayes, Climate and Vec-
torborne Diseases, American Journal of Preventive Medicine 35 (5), 43-450
(2008).

[12] J. L. Gallup and J. D. Sachs, The Economic Burden of Malaria, American
Journal of Tropical Medicine and Hygiene 64, 85-96 (2001).

[13] Garret-Jones, C, Prognosis for interruption of malaria transmission through
assessment of the mosquitoes vectorial capacity, Nature. 204: 1173-1175
(1964).

[14] H. M. Giles and D. A. Warrel, Bruce-Chwatt’s Essential Malariology, (Hod-
der Arnold Publication, London, 2002), 4th edition. 31, 33

[15] Gillies M.T. Coetzee A, A supplement to the anophelinae of Africa south
of Sahara, The South African Institute of Medical Research, Johannesburg.
South Africa pp 55. http://www.who.int/topics/malaria/en/ (1987).

[16] T. Hayakawa, R. Culleton, H. Otani, T. Horii, and K. Tanabe, Big Bang in
the Evolution of Extant Malaria Parasites, Molecular Biology and Evolution
25(10), 2233-2239, (2008).

90



A Delayed Mathematical Model to break the life cycle of Anopheles Mosquito

[17] Z. Hawass, Y. Z. Gad, S. Ismail, R. Khairat, D. Fathalla, N. Hasan, A.
Ahmed, H. Elleithy, M. Ball, F. Gaballah, S. Wasef, M. Fateen, H. Amer,
P. Gostner, A. Selim, A. Zink, and C. M. Pusch, Ancestry and Pathology in
King Tutankhamun’s Family, The Journal of the American Medical Associ-
ation 303, 638-647 (2010).

[17] G. Macdonald, The Epidemiology and Control of Malaria, (Oxford Univer-
sity Press, London, 1957). 30

[19] G. Macdonald, The Analysis of Infection Rates in Diseases in Which Super-
infection Occurs, Tropical Diseases Bulletin 47, 907-915 (1950). 32

[20] P. Martens, R. S. Kovats, S. Nijhof, P. de Vries, M. J. T. Levermore, D. J.
Bradley, J. Cox, and A. J. McMichael, Climate Change and Future Popula-
tions at Risk of Malaria, Global Environmental Change 9, S89-S107 (1999).

[21] K. Marsh, Malaria Disaster in Africa, Lancet 352, 924-925. (1998).

[22] Muhammad A. Yau, A Mathematical Model to Break the Life Cycle of
Anopheles Mosquito, Shiraz E Medical Journal, Vol.12, No.3, 2011.

[23] G. A. Ngwa and W. S. Shu, A mathematical Model for Endemic Malaria with
Variable Human and Mosquito Populations, Mathematical and Computer
Modelling 32, 747-763 (2000).

[24] S. Nourridine, M. I. Teboh-Ewungkem, and G. A. Ngwa, A Mathematical
Model of the Population Dynamics of Disease Transmitting Vectors with
Spatial Consideration, Journal of Biological Dynamics 1751-3758 (2011).

[25] S. M. Rich, F. H. Leendertz, G. Xu, M. LeBreton, C. F. Djoko, M. N. Ami-
nake, E. E. Takang, J. L. D. Diffo, B. L. Pike, B. M. Rosenthal, P. Formenty,
C. Boesch, F. J. Ayala, and N. D. Wolfe, The Origin of Malignant Malaria,
Proceedings of the National Academy of Sciences 106 (35), 14902-14907
(2009).

[26] R. Ross, The Prevention of Malaria, (John Murray, London, 1911). 31

[27] S. G. Staedke, E. W. Nottingham, J. Cox, M. R. Kamya, P. J. Rosenthal, and
G. Dorsey, Proximity to Mosquito Breeding Sites as a Risk Factor for Clini-
cal Malaria Episodes in an Urban Cohort of Ugandan Children, American
Journal of Tropical Medicine and Hygiene 69 (3), 244-246 (2003).

[28] I. W. Sherman, Malaria: Parasite Biology, Pathogenesis, and Protection,
(ASM Press,1998) 30.

91



Muhammad A. Yau and Bootan Rahman

[29] S. Sainz-Elipe, J. Latorre, R. Escosa, M. Masia, M. Fuentes, S. Mas-Coma,
and M. Bargues, Malaria Resurgence Risk in Southern Europe: Climate
Assessment in an HistoricallyEendemic Area of Rice Fields at the Mediter-
ranean Shore of Spain, Malaria Journal 9, 221-236 (2010).

[30] J. Sachs and P. Malaney, The Economic and Social Burden of Malaria, Na-
ture 415, 680-685 (2002).

[31] M. I. Teboh-Ewungkem and T. Yuster, A Within-vector Mathematical Model
of Plasmodium Falciparum and Implications of Incomplete Fertilization on
Optimal Gametocyte Sex Ratio, Journal of Theoretical Biology 264, 273-86
(2010).

[32] M. I. Teboh-Ewungkem, Malaria Control: The Role of Local Communi-
ties as Seen through a Mathematical Model in a Changing Population-
Cameroon, Chapter 4, 103-140, in Advances in Disease Epidemiology
(Nova Science Publishers, 2009). 31

[33] J. N. Wilford, Malaria is a Likely Killer in King Tuts Post-mortem, Technical
Report 16, The New York Times, accessed March 2011.

[34] World Health Organisation, The World Malaria Report, WHO Press, acessed
March 2011 (2010).

[35] World Health Organisation, The World Health Report, WHO Press (2009).

[36] World Health Organization, 10 Facts on Malaria, WHO Press (2009).

[37] S. Wyborny, Parasites: The Malaria Parasite, (KidHaven Press, 2005), 1st
edition.

[38] XiaoLing Li, GuangPing Hu, Stability and Hopf bifurcation on a neuron
network with discrete and distributed delays, Appl. Math. Sci., 2077-2084
(42), 2011.

[39] G. Zhou, N. Minakawa, A. K. Githeko, and G. Yan, Association Between
Climate Variability and Malaria Epidemics in the East African Highlands,
Proceedings of the National Academy of Sciences 101, 2375-2380 (2004).

[40] J. A. Patz and S. H. Olson, Malaria Risk and Temperature: Influences from
Global Climate Change and Local Land use Practices, Proceedings of the
National Academy of Sciences 103, 5635-5636 (2006).

92


