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Abstract

Measuring strength or degree of statistical dependence between two ran-
dom variables is a common problem in many domains. Pearson’s correlation
coefficient ρ is an accurate measure of linear dependence. We show that ρ is
a normalized, Euclidean type distance between joint probability distribution
of the two random variables and that when their independence is assumed
while keeping their marginal distributions. And the normalizing constant
is the geometric mean of two maximal distances; each between the joint
probability distribution when the full linear dependence is assumed while
preserving respective marginal distribution and that when the independence
is assumed. Usage of it is restricted to linear dependence because it is based
on Euclidean type distances that are generally not metrics and considered
full dependence is linear. Therefore, we argue that if a suitable distance
metric is used while considering all possible maximal dependences then it
can measure any non-linear dependence. But then, one must define all the
full dependences. Hellinger distance that is a metric can be used as the dis-
tance measure between probability distributions and obtain a generalization
of ρ for the discrete case.

Keywords: metric/distance; probability simplex; normalization.
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1 Introduction

Measuring association between two random quantities is of interest in many
types statistical analyses and applications in various disciplines. Pearson’s product
moment correlation coefficient is the standard in statistical textbooks and appli-
cations for measuring linear association. And Spearman’s rank correlation coef-
ficient is capable of measuring any monotonic dependence between two random
variables. For two ordinal variables Cramér’s V-statistic is widely used whereas
Tchuprow’s T-statistic is less-known and therefore less often used (see [14] and
references therein). Furthermore, there are many other kinds of dependence mea-
sures used in statistical literature, especially in applied statistical analyses. In sta-
tistical genetics for evaluation of linkage disequilibrium between genetic markers,
authors of [2] use volume tests that are discussed in [10] as a measures of depen-
dence between ordinal variables with fixed margins. For massive datasets in [8]
it is used mutual information dimension that is defined in terms of information
dimension descried in [1].

In [9] it is said that “although it is customary in bivariate data analysis to com-
pute a correlation measure of some sort, one number (or index) alone can never
fully reveal the nature of dependence; hence a variety of measures are needed”.
It is also stated therein that “if (two quantities are) not totally dependent, then it
may be helpful to find some quantities that can measure the strength or degree of
dependence between them”. In this article we try to develop a measure that can in-
dicate ‘the’ degree or strength of association between two discrete variables. Our
measure can be seen as a generalization of the Pearson’s correlation coefficient ρ
using a suitable distance metric between joint probability distributions, instead of
simple Euclidean type distances that are used in ρ (see below). Given the joint
probability distribution (jpd) of two discrete variables, say, X and Y , the degree
of dependence (also called association) between them is expressed as the normal-
ized distance between the jpd of them and that of when the independence of them
is assumed. The associated normalizing constant is geometric mean of distances
between the latter and all possible jpds where full dependence between X and
Y is assumed while retaining each marginal distribution at a time. These latter
distances are in fact the maximal distances since we obtain them by assuming full
dependence. In the following we show that the Pearson’s correlation coefficient
is measure of this nature based on some Euclidean type distances. That is, it is
the ratio of the distance between dependence and independence, and the geomet-
ric mean of the distances that are between full linear dependences and indepen-
dence. Therefore, our measure can be regarded as a generalization of ρ using
a suitable distance between probability distributions and considering non-linear
dependencies. One thing that ρ shows us is that if we need to define a strength
of a dependence then we must find or hypothesize the full dependence(s) corre-
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sponding to the given dependence. This aspect can make numerical evaluation of
the measure algorithmic or computational since sometimes it may not be possible
to obtain the full dependences easily. However, here we do not deal with such
computational issues but our consideration is on defining a measure following the
structure of ρ. For a given dependence (in terms of a jpd) finding efficiently re-
lated jpds representing the full dependences that preserve either of the marginal is
an open problem.

First we show that, in the simple case of binary X and Y , the ρ measures the
degree of dependence with a certain type of Euclidean distance, but for multi-
nary case (and also for continuous variables) a distance in terms another type of
Euclidean area is used. But these Euclidean type distances are appropriate for
measuring only linear dependences. Since we are interested in measuring any
non-linear dependence we propose to use Hellinger distance between joint prob-
ability distributions, that is called as Matsusita distance in the discrete (see [6]).
The Hellinger distance is a metric and it possesses the so-called linear invariance
properties, so it is more suitable for measuring distances between the probability
distributions. Therefore, it can be used to measure any type of dependence.

2 Pearson’s correlation coefficient ρ

For random variables X and Y, the Pearson’s correlation coefficient ρ(X, Y )
is such that |ρ(X, Y )| ≤ 1. The equality holds if and only if X and Y are fully
linearly dependent and ρ(X, Y ) = 0 if they are linearly independent. And the
converse of the latter is not always true unless X and Y are binary. Note that
the full dependence is linear in the binary (also called 2× 2) case where then the
ρ(X, Y ) is often called φ-coefficient.

2.1 2× 2 case: φ-coefficient

Let X and Y be two binary variables with a common state space {0, 1} where
their jpds and marginal probability distributions are written as pxy = p(X =
x, Y = y), px = p(X = x) and qy = p(Y = y) for x, y = 0, 1. Let P =(
p00 p01
p10 p11

)
for short. As shown in [12], any such P can be represneted as a

point in the probability simplex shown in the Figure 1. The jpd of X and Y under
the assumption that they are independent while keeping the marginal distributions

fixed is P I =

(
p0q0 p0q1
p1q0 p1q1

)
and the set of such probability distributions for all

P makes a surface (shown by lines) in the probability simplex. The φ-coefficient
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of X and Y is defined by

φ =
p11 − p1q1√

p1(1− p1)q1(1− q1)
,

which is a measure of degree of association between X and Y . Now let X
and Y be positively correlated, then there are two jpds under the assumption

that the two variables are fully dependent. They are PX =

(
p0 0
0 p1

)
and

P Y =

(
q0 0
0 q1

)
, where PX is when the marginal distribution of X is pre-

served and P Y is when the marginal distribution of Y is preserved. Note that each
full dependence is obtained from P while preserving respective marginal distri-
bution, then the marginal distribution of the other variable should be assumed by
it. Therefore in these cases, the full dependence is essentially linear.

For a generalization of ρ to measure ‘any’ type of dependence we need to look
at its structure and construction. First we consider the case of two binary vari-
ables by examining the φ-coefficient. Let DP I ,P be p11 − p1q1 that is the (2, 2)th

component Euclidean distance between the two probability distributions P I and
P . It is a measure of how far the dependence (under P ) from the independence
(under P I) when marginals of X and Y are fixed. Note that in the 2× 2 case it is
sufficient to consider a single component difference (between the two probability
matrices) since all the components have same absolute difference. Similarly, we
have DP I ,PX = p1(1 − q1) and DP I ,PY = q1(1 − p1). Since PX and P Y are
the two full dependences that we can obtain from P while preserving respective
marginal in each case, we have that DP I ,P ≤ DP I ,PX and DP I ,P ≤ DP I ,PY . In
factDP I ,P = p11−p1q1 = p1(p11/p1−q1) ≤ p1(1−q1) = DP I ,PX since p1 ≥ p11
and similarly the other inequality. It is easy to see that the denominator of the
φ-coefficient is the geometric mean of DP I ,PX and DP I ,PY (the two maximal dis-
tances) and the numerator is DP I ,P . Therefore, the φ-coefficient can be thought
of as the normalized distance between P and P I where the normalizing constant
is the geometric mean of the two maximal distances. Hence the φ-coefficient is 1
if and only if P = PX = P Y (full dependence) and it is 0 if and only if P I = P
(independence).

2.2 n×m case
Let X and Y be two multinary random variables where their state spaces are

{0, 1, .., n − 1} and {0, 1, ..,m − 1} respectively for n,m > 2. For any given
jpd of X and Y, P = (p00, ..., p0(m−1); p10, ..., p1(m−1); ...; p(n−1)1, ..., p(n−1)(m−1))
where pij = p(X = i, Y = j) for i = 0, .., n − 1 and j = 1, ...m − 1, we de-
fine the probability simplex, ∆ = {P = (pij)n×m :

∑
ij pij = 1, pij ≥ 0; i =
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(0, 1, 0, 0)

(1, 0, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

Figure 1: Probability simplex for binary X and Y where their jpd P =
(p00, p10, p01, p11) is a point in it. Any jpd on surface shown by lines represents
independence of X and Y.

0, 1, .., n − 1; j = 0, 1, ...,m − 1} similar to the case of two binary random
variables. But here visualization of it is more difficult. Recall that ρ(X, Y ) =
cov(X, Y )/

√
var(X)V ar(Y ), where

cov(X, Y ) =
∑
x,y

xyp(x, y)−
∑
x

xp(x)
∑
y

yp(y)

and
var(X) =

∑
x

x2p(x)− {
∑
x

xp(x)}2.

In the following we try to visualize the ρ and its structure for understanding how
it measures the dependence.

Let us take the case where n = m, thus allowing us to have perfect (one-to-
one) dependence between X and Y, linear or non-linear. It can be seen that when
X and Y are assigned to two perpendicular axes, cov(X, Y ) is area difference
between two rectangular Euclidean areas, that is shown as the dark area in the
Figure 2. The first area (i.e.,

∑
x,y xyp(x, y)) is the weighted average area created

by the values of X and Y, where, for each component area that is being weighted
is with side lengths X = x and Y = y and its weight is the respective joint
probability of X = x and Y = y, i.e., p(X = x, Y = y). This area represents the
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X

Y

x1 x2 xn

y1

y2

yn

E{XY }

E{X}

E{Y }
cov(X, Y )

Figure 2: Covariance of X and Y is the weighted averaged Euclidean area differ-
ence.

dependence between X and Y . And the second area (i.e.,
∑

x xp(x)×
∑

y yp(y))
is the area created by the side lengths that are the weighted average of values of
X (i.e., E{X}) and that of Y (i.e., E{Y }) where the weights are the respective
marginal probabilities. Since the lengths or values E{X} and E{Y } are also on
same axes as X and Y are, respectively, we can see the difference of the two
areas. Note that it can be seen that the second area (i.e.,

∑
x,y xyp(x)p(y)) is also

calculated in the similar way as the first, but assuming the independence of X and
Y , i.e., it is the weighted average area created by the values ofX and Y , where for
each component area that is being weighted is with side lengthsX = x and Y = y
and the weight associated with it is the respective joint probability of X = x and
Y = y assuming independence p(X = x, Y = y) = p(X = x)p(Y = y). So the
second area represents the scenario of the independence of X and Y . Therefore
one can view that the two areas refer to those when a dependence between X and
Y is assumed and when their independence is assumed while keeping the marginal
distributions fixed, therefore cov(X, Y ) is a ‘distance’ in terms of a Euclidean area
difference between dependence and independence of the two variables.

Moreover var(X) can be interpreted in the same way. Now X is assumed to
be on both axes meaning that Y is replaced by X (taken as if Y were X). This is
a context of assuming a full dependence of X and Y when the marginal of X is
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preserved. Assuming one variable by the other is ‘a way’ to consider a case of full
dependence between the two variables. Then we are assuming the marginal of Y
by that of X . This assumption is easily seen when both variables have same sizes
in their state spaces but it is hard to see when they are different. So the E{X2} is
indicated by the weighted average area that we obtain when Y is X where weight
for each component area x2 is p(x, y) = p(x), i.e., when the marginal of X is
preserved. This is a sensible area under full dependence. And E{X}2 is indicated
by the area when the respective weight is p(x)p(y) = p(x)2 where x = y. This is
a hypothetical case where it is taken as if Y were X , yet their joint probability is
taken as if they were independent. So, var(X) is deviation of the full dependence
from independence if Y were X . And the same interpretation applies for var(Y ).

Thus, ρ(X, Y ) is the normalized area difference referring to cov(X, Y ) with
the normalizing constant being the geometric mean of the two maximal area differ-
ences referring to cov(X, Y ) where they are such that, one is when Y is assumed
to be X (i.e., var(X)) and the other is when X is assumed to be Y (i.e., var(Y )).
That is, the normalizing constant is obtained by assuming the full dependence be-
tweenX and Y. However the full dependence quantified in this way is appropriate
only for doing so for linear dependences. Since there are two such cases of full
linear dependence the geometric mean of these two maximal area differences is
taken. Note that the above interpretation is valid for the case of X and Y have
continuous state spaces.

One thing that we need to show is that cov(X, Y ) is maximal (or minimal)
when X and Y are strictly monotonically related, for example, linearly related
positively (negatively), among all cases of full ono-to-one dependencies between
X and Y for fixed maginals of X and Y . This indicates that ρ is not able to
identify non-monotonic relations since their covariance values can not be ordered.
To see that cov(X, Y ) is maximal when Y is strictly increasing with X , let X =
{a1 < ... < an} be the state space of X and Y = {b1 < ... < bn} be that of Y .
Then considering inequalities (ai−aj)(bi−bj) > 0 for i, j = 1, ..., n (i.e., we have
aibi + ajbj > aibj + ajbi) it can be shown that

∑
i aibi >

∑
i,j:j=f(i) aibj where f

is any one-to-one function from X to Y such that f(i) 6= i for at least two distinct
values of i (i.e., f is not a strictly increasing function of i). Now if the marginals of
X and that of Y are (p1, ..., pn) and (q1, ..., qn), where pi = qi for all i = 1, ..., n
when Y is monotonically increasing with X and otherwise pi = qj for some
appropriate i 6= j for i, j = 1, ...., n, then

∑
i aibipi >

∑
i,j:j=f(i) aibjpi meaning

that E{XYM} ≥ E{XY } where YM is Y when it is strictly increasing with
X . This implies that cov(X, YM) ≥ cov(X, Y ) for fixed marginals of X and Y .
Therefore, for discreteX and Y , ρ(X, Y ) is maximal when Y is strictly increasing
in X , among all one-to-one relationships between them. So, if this is the case
ρ(X, Y ) = 1 (maximal) since cov(X, Y ) ≤ var(X) and cov(X, Y ) ≤ var(Y ).
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3 Some other popular measures of dependence
There are a few popular measures of dependence that have similar structure

in their definition. We review them briefly by giving some interpretations that
support our definition of dependence measure.

3.1 Spearman’s rank correlation coefficient ρs

In many statistical analyses, especially for non-normal data a popular measure
of dependence between two random variables, say, X and Y , is the Spearman’s
rank correlation coefficient.

ρs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)

where di = x(i) − y(i) and x(i) is the ith smallest value in the data sample of X
and similarly for y(i). It is obvious that ρs = 1 if and only if two components
of data pair (xi, yi) has the same ranking, for all data pairs since then di = 0
for all i. And one can see that for a perfect negative dependence

∑n
i=1 d

2
i should

be its maximal value that is n(n2 − 1)/3 in order to get ρsX,Y = −1. Therefore
the normalizing constant is taken as n(n2 − 1)/6 but due to the structure of the
definition of the coefficient it is applied to the term

∑n
i=1 d

2
i . Therefore the ρs

is an accurate measure any monotonic dependence between the two variables.
However, when the two variables are not having a strictly monotonic relationship
the measure can not give a correct picture of the dependence.

3.2 Information theoretic measures
Another popular measure of dependence, especially in machine learning lit-

erature and applied statistics is so-called mutual information (see, for example,
[11]). For discrete random variables X and Y , it is defined as

I(X, Y ) =
∑
x,y

p(x, y)log
p(x, y)

p(x)p(y)

and furthermore, conditional mutual information between X and Y given another
variable Z is defined as

CI(X, Y, Z) =
∑
x,y,z

p(x, y, z)log
p(x, y|z)

p(x|z)p(y|z)
(1)

If X and Y are independent then the I(X, Y ) = 0 and if X and Y are condi-
tionally independent given Z then the CI(X, Y, Z) = 0. In fact, these depen-
dence measures are also based on so-called Kullback-Leibler (KL) distance or
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rather divergance, [13]. It is easy to see that I(X, Y ) is the KL divergence be-
tween the joint probability distribution of X and Y , and that when independence
is assumed, therefore it measures the dependence in terms of ‘departure’ from
independence. In fact, I(X, Y ) is the weighted average of Euclidean distance be-
tween logarithmic of the joint probability p(x, y) and that when independence is
assumed, where weights are the respective joint probabilities. That is, it is the
expectation, under the joint probability, of the difference between the logarithmic
of the joint probability p(x, y) and that when independence is assumed. Note that
though 0 ≤ I(., .) ≤ 1, there is no normalization (with respect to any maximal
dependence) is involved.

Though these information measures are used to identify respective depen-
dences they are not metrics since KL-divergance is not a true distance (metric),
therefore they can not be used to measure the degree of dependence between
variables. For example, as shown in [7] let p(x, y) and q(x, y) define two de-

pendencies between X and Y where p(x, y) =

(
3/8 1/8
1/8 3/8

)
and q(x, y) =(

1/2 0
1/8 3/8

)
. Obviously probability distribution q shows a higher dependency

than that of p but its mutual information is lower than that of p, (MIp(X, Y ) >
MIq(X, Y )). Note that q is obtained from p without preserving the marginal
distributions of X and Y . Now let r(u, v) and s(u, v) define two dependencies

between random variables U and V where r(u, v) =

 0 1/7 1/7
1/7 1/7 1/7
1/7 1/7 0

 and

s(u, v) =

 0 0 2/7
1/7 2/7 0
1/7 1/7 0

 . Then we have that MIr(U, V ) < MIs(U, V ).

Note that s shows a higher dependency than that of r and it is obtained from r by
preserving the marginal distributions of U and V . Furthermore, all zeros in r are
also in s. If this is the case then higher dependency implies higher mutual infor-
mation. So mutual information is restricted measure of degree of dependence.

3.3 Chi squared test statistic χ2

We can see that well-known Chi squared test statistic χ2 that is used for testing
independence of two discrete random variables uses a certain dependence measure
in it for performing the test. Let X and Y take values i = 1, ..., α and j = 1, ..., β,
respectively and let us write the joint probability of X = i and Y = j as pij ,
marginal probability of X = i as pi. and that of Y = i as p.j . So, the conditional
probability of X = i given Y = j is pi|j = pij/p.j and similarly pj|i is defined.
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Then,

χ2 =
∑
i,j

n
(pij − pi.p.j)2

pi.p.j
= n

{∑
i,j

p2ij
pi.p.j

− 1
}

= n
{∑

i,j

pij
pij − pi.p.j
pi.p.j

}
= n

{∑
i,j

pij
pi|j − pi.
pi.

}
= n

{∑
i,j

pij
pj|i − p.j
p.j

}
= nE{A}

where A is a random variable taking the value pi|j−pi.
pi.

=
pj|i−p.j

p.j
with probability

pij, for i = 1, ..., α and j = 1, ..., β, and E denotes the expectation. That is, χ2 is
n-multiple of the expectation of a random variable whose (i, j)th value is a ‘nor-
malized’ distance between the probability value pi|j and pi. where the normalizing
constant is pi., for all i, j, and vice versa. Note that pi|j−pi.

pi.
may be referred to as

the ‘degree’ of dependence between the two events X = i and Y = j. In fact,
it is the certainty factor for the case pi|j < pi., as described in [4] for measuring
the dependency between the two events and it is a symmetric measure. However,
here it is used without the condition. So, E{A} is the expectation of a degree of
dependence between the events X = x and Y = y for all x, y. Therefore, E{A}
can be thought of as measure of degree of dependence between X and Y. And the
term n in χ2 makes it a statistic. That is, a statistic for testing dependence between
two variables can be seen as a product of two factors; one is a quantity related the
degree of dependence between two variables and the other is that of total number
of data cases that are used to estimate the probabilities related to them (i.e., sample
information).

3.4 Test of two proportions
Sometimes one may be interested in testing equality of two proportions to see

if given two variables are independent, for example, when the outcome (Y ) of
interest is binary, such as voting, denoted by Y = 1 (or not, denoted by Y = 0),
for a political candidate in an election for two groups/populations (X) such as
men, denoted by X = 1, and women, denoted by X = 0. Then one can test if two
proportions are equal, i.e., p(Y = 1|X = 1) = p(Y = 1|X = 0) (let us write it as
p1 = q1) by the Z statistics

Z =
1√

1/a+ 1/b

p1 − q1√
p(1− p)

where a and b are the sizes of the two samples of Y when X = 1 and X = 0,
respectively, and p = p(Y = 1). Now we can interpret that the factor p1−q1√

p(1−p)
as a measure of degree of dependence between the two variables due to the term
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(p1− q1) in it, where the term
√
p(1− p) should be taken as the normalizing con-

stant. Note that the latter is constructed assuming full dependence between the two

variables where, then their joint probability distribution is P =

(
1− p 0

0 p

)
or

similar. Instead of just using pwhich is the pooled proportion, the geometric mean
of p and (1 − p) should be used as the normalizing constant. This is necessary
to yield the same test statistic value for testing the same hypothesis with com-
plementary probabilities i.e., p(Y = 0|X = 1) and p(Y = 0|X = 0). And the
term 1√

1/a+1/b
which is a function of sample sizes (sample information) makes Z

a statistics. So, similar to χ2 statistic, Z has a measure of degree of dependence
between the two variables in it, in addition to information on the sample sizes.

4 Axioms of an ideal measure of dependence
Before we define our measure of strength/degree of dependence (or rather a

generalization of ρ) it is appropriate to mention axioms that an ideal measure
should possess as shown in [3]. However, it is hard to find dependence measures
satisfying all these axioms. Our generalization of ρ seems to have a bigger poten-
tial in satisfying them, but we omit the discussion here. Following are the axioms;

1. It is well-defined for both continuous and discrete case

2. It is normalized such that its value 0 implies the independence and value 1
implies the full dependence (one variable is a deterministic function of the
other), where all intermediate degrees of dependencies lie between 0 and 1

3. It is equal or has a simple relationship with the Pearson’s correlation coeffi-
cient in the case of a bivariate normal distribution

4. It is a metric, i.e., it is a true measure of distance (between the independence
and dependence of interest) not just a divergence

5. It is invariant under continuous and strictly increasing transformations.

These axioms are straightforward and require no further explanation.
In the following we define our measure following the structure and the con-

struction of ρ but using a true distance metric. We propose to use so-called
Hellinger distance but one may use another suitable distance metric. Since we
are keeping the structure of the ρ the same but replacing its distance measure with
a better one (a metric) when defining our dependence measure, we call it as a
generalization of the ρ. This means that for any given dependence we should be
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able to define the corresponding all possible full dependences, since the measure
should be a ratio between a distance from independence to the given dependence
and geometric average of distances from independence to the full dependences.

5 Defining a measure of degree of dependence
As we have seen earlier, in the two binary variables (2 × 2) case where only

the linear dependence exists the dependence can be measured by using a single
component Euclidean distance between joint probability distributions. However,
in the case of two multinary variables (n × n, where n > 2) we can have many
types of dependences, and therefore distances among probability distributions can
not be defined through only a single component or a weighted average area dif-
ference, that are Euclidean type distances and capable of measuring only linear
dependences. Therefore we need to use some other suitable distance to measure
any non-linear dependences. In the following we discuss a possible distance that
is a true metric.

5.1 A metric distance between two probability distributions
We propose to use Hellinger distance between probability distributions (also

called Matsushita distance for the discrete case) which is a metric in the proba-
bility simplex for our task of measuring dependence. Recall that our dependence
measure should be the normalized distance between the given joint probability
distribution of the two variables and that when their independence is assumed
while preserving the marginals, where the normalizing constant is obtained by
considering similar distances related to the all possible maximal dependences but
preserving only one of the marginals at each time. Let Φ and Ψ be two discrete
distribution functions (φ and ψ are probability distributions or mass functions)
then the Hellinger distance between Φ and Ψ is defined as

M(Φ,Ψ) =

{
1

2

∑
x

{√
φ(x)−

√
ψ(x)

}2}1/2

In addition to satisfying properties of a metric M(., .) also satisfies the following
properties: (1) 0 ≤ M(Φ,Ψ) ≤ 1, (2) M(Φ(T ),Ψ(T )) = M(Φ(T + a),Ψ(T +
a)) for any constant a, and (3) M(Φ(T ),Ψ(T )) = M(Φ(cT ),Ψ(cT )) for any
constant c 6= 0 where the last two are called the linear invariance properties of the
probability metric. Note that

(
M(., .)

)2 is not a metric.
First we should have an idea about the furtherest jpd(s) for a given jpd that

may represent independence. In fact we can see that the furtherest probability
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distribution to a distribution that represent independence is not useful but those
with fixed marginals, each at a time. For a given distribution function, say, Φ let
us find the maximally Hellinger-distanced distribution function Ψ. The following
proposition shows how to find it.

Proposition 5.1. For positive probability distribution φmaximally Hellinger-distanced
probability distribution ψ is given by

ψ(t) =

{
1, if t = argminu φ(u)

0, otherwise.

and then, M(Φ,Ψ) =
{

1−
√
min{φ(t) : t ∈ T }

}1/2

< 1.

Proof. Let |T | = n, φ(ti) = φi and ψ(ti) = ψi for i = 1, ..., n. Let re-index
all φi’s such that φ(1) ≥ φ(2) ≥ .... ≥ φ(n) and possibly some of the ψi’s can be
zeros. M(Φ,Ψ) is maximal when

∑
t∈T

√
φ(t)ψ(t) is minimal.

n∑
i=1

√
φiψi = (

√
ψ1 + ...+

√
ψn)
√
φ(n)

+(
√
ψ1 + ...+

√
ψn−1)(

√
φ(n−1) −

√
φ(n))

...+
√
ψ1(
√
φ(1) −

√
φ(2)) ≥

√
φ(n)

That is,
∑n

i=1

√
φiψi is minimal when ψ1 = ... = ψn−1 = 0 and ψn = 1. So we

obtain the maximally Hellinger-distanced distribution function Ψ and therefore
M(Φ,Ψ).2

But then T is deterministic variable with respect to Ψ! This theorem says
that for any given probability distribution, bivariate discrete in our case, the maxi-
mally Hellinger-distanced probability distribution is represented by a vertex of the
probability simplex. All its component are zeros except for one place that has 1
that is corresponding to the smallest probability value of the reference probability
distribution. This is a degenerate case as far as dependence of the two variables
are concerned since it represents that both variables are deterministic and hav-
ing full dependence. Therefore, such a full dependence can not be used for the
normalization since it does not generally preserve the marginals.

For a given jpd P of X and Y, the dependence of them that it represents
should be measured with a suitable normalized distance between P and P I . It
is clear from above that the normalizing constant should be the geometric mean
of distances from independence to all possible full dependences where each such
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full dependence should be preserving either of marginals. This rule is to follow
the correlation coefficient definition. Therefore, an essential step is to find the
two types of probability distributions PX (jpd(s) representing full dependence
when marginal of X is fixed) and P Y (jpd(s) representing full dependence when
marginal of Y is fixed) in order to find the normalizing constant. As you will see
in some cases there may be multiple candidates for each of them. Therefore we
have the following definition. Note that there are some instances such as in [3]
and [5] where Hellinger distance between the jpd and that of when independence
is assumed is used for measuring the dependence, but in such work no normaliza-
tion is done. However, the above proposition implies that distance between any
non-deterministic jpd representing independence and that representing a full de-
pendence can be strictly less than 1 for two discrete random variables, therefore
normalization is necessary if one wants to have a measure that shows strength of
dependence.

Definition 5.1. When M is a metric in the probability simplex of two discrete
random variables X and Y, M -based measure of degree of dependence between
X and Y represented by their joint distribution function P is defined as

ρM(X, Y ) =
M(P I , P )∏

PX∈PX
max

∏
PY ∈PY

max

{
M(P I , PX)M(P I , P Y )

}1/|PY
max+PX

max|

where P I is the joint distribution function of X and Y when their independence is
assumed, PX

max denotes the set of all joint distribution functions, each represent-
ing a maximal dependence while preserving the marginal distribution of X and
similarly for PY

max, |A| is the cardinality of the set A, and M(P,Q) is the distance
metric between two probability distributions P and Q.

Note that the denominator is the geometric mean of the maximal distances be-
tween full dependences and the independence. And we use Hellinger distance as
the distance measure. Since ρM is defined following the structure of the Pearson’s
correlation coefficient it can be regarded as a generalization of it for the case of
discrete variables.

For linear relationships measuring the dependence is relatively easy since both
PX and P Y represent perfect linear dependence. This is when they have all their
entries zero except for those, but may not be all, in each diagonal in respective
case. For example, for a positive linear relation, PX is obtained by assigning each
main diagonal entry with the sum of all entries in the respective row. This assures
that the marginal probability of X is preserved when obtaining full dependence,
and similarly for P Y . Note that positive linear relationship is selected if main
diagonal entries are generally larger than the other entries in the joint probability
value matrix P . But when we allow non-linear relationships between X and Y
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there are no pre-specified PX and P Y , therefore multiple candidates may exist
for each of them. We argue that they should be induced from the jpd in a similar
way to the case of linear dependence. So we propose following simple rule for
obtaining PX and P Y .

Definition 5.2. For each x, when there exists a single value y′ such that y′ =
argmaxy p(X = x, Y = y), then let pX(X = x, Y = y′) = p(X = x) and
pX(X = x, Y 6= y′) = 0 to obtain PX . If there are multiple such y′ values then
obtain multiple PX , each refering to one of those y′ values, assuming that it is the
only value where maxima exists. And similarly P Y is defined.

By this way, we get one or more jpds each representing a maximal dependence
that preserves respective marginal.

6 Examples of n× n case where n ≥ 2

Now we consider some different cases of P and demonstrate how we can
calculate our measure and compare its value to those of some trational measures.

Case 1 Suppose a simple case of each row and column of P having a single
maximal entry that is common to both its row and column. Then the other entries
in the row are summed onto the maximal entry in the row for each row to yield
PX and similarly P Y is obtained. Therefore, PX and P Y are on the boundary of
∆, so they are the furtherest probability distributions from P I while preserving
respective marginals. Then the degree of dependence between X and Y is defined
as (since |PX

max| = |PY
max| = 1 )

ρM(X, Y ) =
M(P I , P )√

M(P I , PX)M(P I , P Y )

Example 6.1. For binary X and Y with P =

(
0.3 0.2
0.1 0.4

)
, φ = 0.4082 and

ρM = 0.2783 (Cramer’s V and Tschuprow’s T are 0.4082). And interchanging
off-main diagonal entries but keeping the main diagonal entries as they were, i.e.,

having P =

(
0.3 0.1
0.2 0.4

)
, gives the same results for all measures.

Example 6.2. Let state spaces of X and Y be {1, 2, 3} and their joint proba-

bility P =

 0.05 0.03 0.20
0.30 0.07 0.05
0.04 0.20 0.06

 that is a non-linear dependence and then
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P I =

 0.1092 0.084 0.0868
0.1638 0.126 0.1302
0.1170 0.090 0.0930

, PX =

 0.00 0.00 0.28
0.42 0.00 0.00
0.00 0.30 0.00

 and P Y = 0.00 0.00 0.31
0.39 0.00 0.00
0.00 0.30 0.00

. And then ρ = −0.2025 but ρM = 0.4113 (Cramer’s

V and Tschuprow’s T are 0.5472). But had that P ==

 0.05 0.03 0.20
0.04 0.20 0.05
0.30 0.07 0.06


which is a linear dependence then ρ = −0.5474 and ρM = 0.4075 (Cramer’s V
and Tschuprow’s T are 0.5467). Note the change in the degree of dependence is
small since linear dependence is obtained from nonlinear case by just interchang-
ing probability values in P .

Case 2 When each row and column of P has a single maximal entry that may
not be common to both its row and column we still can obtain a single PX and a
single P Y . Therefore, we can apply the above definition.

Example 6.3. When P =

 0.30 0.03 0.20
0.05 0.07 0.05
0.04 0.20 0.06

 we have ρ = 0.1383 and

ρM = 0.450011. Note that here we have that Cramer’s V and Tschuprow’s T
are 0.4257843 that are lesser than our measure.

Case 3 When there are more than one maximal entry in a row or a column we
have multiple PX’s and multiple P Y ’s. Note that here we try to obtain a similar
situation in the above two cases. That is, each row of PX has only one non-zero
element (it is obtained by summing up all entries in the corresponding row of P ,
thereby preserving the marginal probability distribution of X). Assume that we
get a number of PX’s, say, PX1 , ..., PXa and b number of P Y , say, P Y1 , ..., P Yb .
Let us consider the following example.

Example 6.4. When P =


0.11 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.25
0.01 0.10 0.10 0.01 0.01
0.01 0.01 0.01 0.15 0.01
0.01 0.10 0.01 0.01 0.01

 then we make two

PX’s;
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PX1 =


0.15 0.000 0.000 0.00 0.00
0.00 0.000 0.000 0.00 0.29
0.00 0.230 0.000 0.00 0.00
0.00 0.000 0.000 0.19 0.00
0.00 0.140 0.000 0.00 0.00

 and

PX2 =


0.15 0.000 0.000 0.00 0.00
0.00 0.000 0.000 0.00 0.29
0.00 0.000 0.230 0.00 0.00
0.00 0.000 0.000 0.19 0.00
0.00 0.140 0.000 0.00 0.00

.

Therefore we have two maximal distances to these two full dependences. They are
M(P I , PX1) and M(P I , PX2) and similarly we obtain another two full depen-
dences when marginal of Y is preserved. Therefore,

ρM(X, Y ) =
M(P, P I)∏2

i=1

∏2
j=1

{
M(PXi , P I)M(P Yj , P I)

} 1
4

Then ρ = −0.0491 and ρM = 0.5731. Note that here we have that Cramer’s V
and Tschuprow’s T are 0.6652.

7 Conclusion
We have looked at the structure and the construction of the Pearson’s cor-

relation coefficient ρ in order to have a generalization of it for measuring any
non-linear dependence between two random variables. We have shown that it is
simple do it geometrically for discrete variables. It can be shown that ρ is a nor-
malized ‘Euclidean’ type distance between the joint probability distribution of the
two random variables and that when their independence is assumed in the prob-
ability simplex of the two variables where normalizing constant is the geometric
mean of two maximal such distances; each between full linear dependence of the
two variables and their independence while preserving the marginal distribution
of respective variable. So, we have shown that if we consider all possible full
dependences and use an appropriate distance such as Hellinger then we can have
a genaralization of ρ. But generally it is not easy to find all possible maximal
distances, which is an open problem that may need algorithmic or computational
solutions. However we have shown some examples after having defined a gener-
alization.
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Abstract  

Terrain traficability is one of the key activities of military planning, 

firefighting and emergency interventions. Terrain traficability is 

affected by many factors and terrain slope is one of them. Deceleration 

ratio that represents the influence of slope inclination is dependent on 

a technical attributes of vehicle. The results of field terrain tests 

suggest that deceleration ratio established via calculation does not 

have to correspond with practical experience. 
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1 Introduction  
 

The basis for the planning of vehicle movement in terrain is the knowledge 

of natural conditions, which influence the movement itself. With respect to the 

driving characteristics, which are characterized by a whole range of technical 

parameters, there is a modelling process of the impact of natural conditions on 

the movement in the field [1], [2], [3]. Landscape represents very complicated 

system and therefore, during the modelling of the natural conditions impact on 

the movement, the landscape elements are evaluated separately. One of these 

elements is terrain relief, whose slope characteristics have a direct influence on 

the speed of a moving vehicle [4]. Compared to the other terrain characteristics, 

the relief slope can be successfully analyzed with the GIS tools (considering the 

accuracy and quality of spatial data) [5]. 
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2  Theory of Cross Country Movement 
 

The vehicle mobility in the field is based on the mutual effect of the tree 

basic components, which influence: operation in terrain (maneuver), used 

technique and geographical conditions. The mutual influence of these 

components, related to the military operations, shows Fig. 1. 

 

 
 

Fig. 1: The influence of geographic conditions to combat action and combat 

equipment [6]. 

 

Modern methods of conducting military operations are supported by a range 

of operational analysis. One of the very important area represent the terrain 

analysis, which are these days conducted especially with the usage of digital 

geographic data and GIS tools. In this area we classify also terrain trafficability 

analysis, which results may not be used only for military purposes, but also for 

the fulfilment of the tasks of IRS or emergency management authorities.  

The terrain trafficability can be defined as a mobile ability of units, which is 

influenced especially by geographical factors of the territory and technical 

parameters of vehicles, or (according to [6]) as the level of technical competence 

of individual vehicles to move in terrain and overcame different geographic 

features and phenomena.  

Evaluation of geographic factors which influence the terrain trafficability 

mainly concentrates on the impact of relief gradient, microrelief forms, soil 

condition, vegetation, waters, climate and weather condition, settlements and 

communications. These factors are later divided to other components [6]. The 

evaluation is also influenced by technical data of used vehicles and driver’s 

capability. But it is very difficult to mathematically evaluate driver’s influence.  

All these factors are closely related and influence each other. Their 

combined influence on vehicle cause deceleration or even stopping. The real 

speed of the vehicle can be expressed by this formula [2]:      
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         (1) 

where vj means vehicle speed at j-section of vehicle path [km·h
-1

], vmax 

maximum vehicle speed at communications [km·h
-1

], ci i-coefficient of 

deceleration due to factor Fi computed for j-section with invariable values ci, n 

number of geographic factors effecting at given section of terrain and k number 

of sections on vehicle path.  

The terrain trafficability is very complex and it is not possible to identify 

effect of all the terrain factors, therefore it is necessary to proceed 

systematically. First comes identifying basic terrain factors influence, such as 

relief gradient, then comes their combined influence and last comes less 

important components.   

 

The impact of relief gradient to cross-country movement 

 
A relief gradient represents one of the most fundamental factor implicating 

cross-country movement. The calculation of total resulting coefficient of vehicle 

deceleration by relief and microrelief impact is given for determinate by relation 

as follows [7]: 

 
 

(2) 

where c11 is deceleration coefficient by impact of gradient factor and c12 

deceleration coefficient by impact of microrelief factor. 

 

3 Calculation of coefficient of vehicle deceleration 

of impact of relief gradient (c11) 
 

It is possible to express a relief gradient by various terrain models such as: 

raster model, TIN and others. The coefficient of deceleration of gradient factor 

c11 is determinable by three methods as follows [6]: 

1) according to DMA method (Defence mapping Agency); 

2) on the basic of tractive charts of particular vehicles; 

3) by the terrain operation tests. 

 

Determination of c11 according to DMA method: 

 

According to the formula listed below, which contains values of relief 

gradient and parameters of vehicle, is possible to acquire deceleration ratio [8]: 
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           (3) 

where GradTmax [%,°] is maximum climbing capability of a vehicle on terrain; 

GradKmax [%,°] maximum climbing capability of a vehicle on road and SH [%,°] 

mean value of slope gradient obtained from the Table 1. 

Category Slope [%] SH [%] Slope [°] SH [°] 

1 < 0 0 < 0 0 

2 0 – 3 1,5 0,00 – 1,35 0,68 

3 3 – 10 6,5 1,35 – 4,50 2,93 

4 10 – 20 15 4,50 – 9,00 6,75 

5 20 – 30 25 9,00 – 13,50 11,25 

6 30 – 45 37,5 13,50 – 20,25 16,88 

7 > 45 slope [%] > 20,25 slope [°] 

 

Table 1: Determination of mean value of the slope gradient (SH) from the measured 

range of slopes [6]. 
 

Determination of c11 at the basis of tractive charts: 

 

The deceleration ratio of impact of gradient factor can by also determinable 

on the basis of tractive charts of particular vehicles [6]. To calculate running 

characteristic on the route of vehicle it must be started from the presupposition 

that this route is described at particular section by longitudinal gradient (α), 

transversal inclination (β), coefficient of rolling resistance (f) and coefficient of 

static friction (φ). Particularly significant from the point of view of cross-

country movements evaluation are also following data: 

 attainable driving speed (eventually an acceleration); 

 conditions whereat coming to a swerving either of longitudinal or 

transversal direction; 

 conditions whereat coming to loss of maneuverability and longitudinal or 

transversal rollover. 

A tractive chart is the formulation of tractive power dependence on vehicle  

driving speed. The driving speed is plotted on the horizontal axis on the chart 

and on the vertical axis are plotted tractive power and forces of resistance. The 

tractive power FT depends on engine torque and total ratio, whereas both 

quantities are changeable in running. Providing that transmission efficiency is 

constant, the tractive power at particular speed gear is adequate to engine torque 

at that moment. Considering total ratio changeability, we can say that each 

vehicle has as much tractive power curves as the number of vehicle speed gears. 
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The process of calculating the course of curves of tractive power has 

following parts [6]: 

 number of points are selected on external torque characteristics of engine 

that are characterizing engine torque curve; 

 from the characteristic we determine corresponding quantity of engine 

torque Mm and proper engine revolutions nm; 

 the coordinates (Mm, nm) are read out of selected points on the engine 

torque characteristics; 

 the coordinates (Mm, nm) are then transformed to coordinates (FT, V) by 

formula (4) and points with the coordinates (FT, V) for particular speed 

gears create the curves of tractive power at the tractive chart. 

 

 

           (4) 

where FT [N] is tractive power, Mm [Nm] engine torque, ηm [%] mechanical 

efficiency of transmissions, ic(j) total transmission ratio, rd [m] wheel dynamic 

radius, V [km·h-1
] vehicle driving speed and nm [min

-1
] engine revolutions. 

The curves of rolling resistance by even speed movements are marked by 

proper terrain gradient and tractive power curve is marked by relating speed 

gear. For the ideal course of tractive power each tractive power curve tangents a 

hyperbolic curve.  

The contact points of both curves at every speed gear corresponds to engine 

revolutions at maximum power. The chart is completed under horizontal axis 

and scales of motor revolutions at given speed in particular speed gears. This 

diagram also presents a survey of driving characteristics of vehicle [6]:     

 climb capability at particular speed gears (by the interpolation among 

curves of rolling resistance – slopes); 

 what speed gear is to be used during uphill driving on particular slope; 

 what speed is achievable on a particular slope; 

 maximum speed on a plain field (Vmax). 

 

Determination of c11  at the basis of operational testing: 

 

For the basic type of vehicles was relief gradient deceleration ratio 

determine based on terrain tests. For the particular vehicles was used following 

procedure [6]:  

1. The tractive chart is calculated. 

2. The readings of maximum available driving speeds and driving positions 

used were made from the tractive diagram for each partial parts of 

section given. 
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3. The passage time was calculated for each mentioned partial parts (at all 

19 sections of terrain). 

4. The results were compared with operational driving tests and on that 

basis; the resulting coefficient of deceleration was defined for each 

section (at all 19 sections of terrain). 

5. There were calculated mean values of the multiple coefficients of 

deceleration for each vehicle for: terrain; cartways and forest ways; 

roads. 

To calculate presupposed driving speed on communications, cartways and 

forest ways can be used following relation:  

 
 

           (5) 

where VEST [km·h-1
] means estimated driving speed, VMAX [km·h-1

] 

maximum driving speed indicated for a vehicle and c11 multiple coefficient of 

deceleration according to the Table 2. 

 

Carriageway 

type 

Passenger  

off-road 

vehicle 

Medium off- 

road utility 

vehicles 

Heavy off- 

road lorries 

Infantry  

combat vehicles 
Tanks 

Terrain 0.22 0.31 0.28 0.42 0.41 

Cartways  

and forest ways 
0.43 0.53 0.52 0.58 0.53 

Roads 0.72 0.86 0.84 0.72 0.72 

 

Table 1: The mean multiple coefficients of deceleration of military vehicle 

movements on free terrain and on communications [6]. 

 

4 Field testing and data processing 
 

To verify the theoretical values field tests were used. Tests were conducted 

in the military training area Libava in 2015, there were tested eight types of 

vehicles, including Tatra 810 6x6 (T810). 

For analysis of the impact of the relief gradient there were selected rides on 

the training circuit, which contains a tank track. Unpaved surface of the tank 

track was not covered by vegetation and contained lots of micro-relief forms, 

especially the waves od soil that have approximately 20 m in length with an 

amplitude up to 1 m and ruts. The width of the tank tracks ranges from 10 to 30 

m. The maximum slope of the test area reaches only to values of 16 °. 

The vehicle routes were recorded by a GPS receiver Trimble Geoexplorer 

3000 GeoXT equipped with an external antenna External Mini. The vehicle 

speed was calculated from locations and times of the records.  
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All records have been checked and the wrong or unnecessary ones have 

been removed (an error in position, parking, turning at the end of the route). 

Next step was to add the value of the terrain slope from the most precise digital 

elevation model of Czech Republic (DMR5G) [7] in the spot of each record with 

use of the ArcGIS 10.2.1 [8]. 

 

Correction of the estimated speed 

Values of the speed calculated by formula (3) and derived from the traction  

diagram are acceptable only in case of ideal conditions, where the only factor 

influencing the drive is terrain slope. The analysed rides took place under 

invariant but still not ideal conditions, such as after rain with muddy and 

slippery surface. After the elimination of micro-relief affected records all other 

influences can be considered constant.  

Maximum speed T810 vehicle in terrain mode (VMAX) is 65 km·h
-1

, the  

maximum reached speed in the given conditions was 36 km·h
-1

 (VMAX‘). Then 

the deceleration coefficient CS (influence of surroundings) has the value 0.55. 

All the following values have been corrected by this coefficient (equation xxx). 

 

 
           (6) 

Method of predicting the vehicle speed in general terrain, which neglects 

the influence of the slope, was not corrected, because all the factors have been 

already included. 

 

Verification of theoretical values of speed 

 

The results of all three methods of calculating the velocity field were 

compared with the measured data. Unfortunately, the measured data do not 

represent the whole range of terrain slope which T810 can pass through, for 

example up to 30 °. Frequency distribution of the slope gradient in the records is 

shown in Fig. 2. Small counts in the higher slopes reduce their credibility. 

However, at least in the lower slopes below 7 ° the data can be probably used to 

verify mathematical apparatus. 
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Fig. 2: Counts of measured values 

 

The Table 3 compares the calculated values according to the methodology 

of DMA and speed read from T810 tractive chart with the measured speed. The 

same comparing is represented on the Fig. 3. 

 

 
 

Tab. 3. The comparison of the calculated and measured values. 

 

The difference between both estimated value is not significant in small 

slopes, but with a growing slope the difference increase up to 5 km·h
-1

. The 

measured speed is much lower in slopes 0 ° – 7 ° and the same situation applies 

to the predicted average speed, which is 28 km·h
-1

, but the measured speed was 

23 km·h
-1

.  

 



Verification of the mathematically computed impact of the relief gradient to 

vehicle speed 

31 

 

 
Fig. 3. The Illustration of the comparison of the calculated and measured values 

 

The achieved results do not correspond with the expectations and it is 

probably not possible to use this data at this point of the research to verify 

impact of the slope gradient to the vehicle speed. The reason of very slow ride 

along the entire length of the route and a reason of unusable results seem to be 

less experienced driver, who drove a given car. 

Significant distortion of measured data due to unexperienced driver was 

confirmed by comparison with the another lorry, Tatra 815 8x8. Its technical 

specifications are slightly different, but the maximum surmountable slope 

remains the same value. The Fig. 4 illustrates both measured rides – T810 and 

T815. Data measurement by other vehicles proves that the main impact on the 

T810 ride was the driver.  

The relatively high speed at inclinations of 11 ° - 16 ° are caused by a too 

short climb to slowdown the vehicles marginally. 

 

 
 

Fig. 4: The comparison of the calculated and measured values (T810, T815)  
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5 Conclusions 
 

Unfortunately, the data from the T810 cannot be used to verify the mathematical 

apparatus used to calculate the impact of the slope gradient on vehicle speed. 

The first obstacle is the number of data from higher terrain slopes and the other 

is a distortion caused by inexperience of the driver. Even this result has a 

positive contribution in the form of experience needed for planning field tests 

and obtaining relevant data.  

To determine the impact of the slope gradient on the speed of T810 is necessary 

to get more data from multiple passes through the high slopes near the limits of 

the vehicle. The next step to successful verification of mathematical calculations 

is testing several drivers. It will significantly reduce the influence of experience 

of the driver and also possibly his mental state.  
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Abstract

In this paper a slightly different approach to the use of the domain
decomposition method of the Schwarz type is proposed. Instead of
the standard coarse space construction we propose to use a recursive
solution on each domain. Thus we do not need to construct a coarse
space but nevertheless we are still keeping O(1) convergence speed.
For local problems we use the standard iterative solvers for which the
amount of the work for one step is O(N), where N is the number of
equations. Due to the fact that the overlapping is under our control we
can keep total work in O(N (1+γ)) operations with arbitrary positive γ.

Keywords: Domain Decomposition, Finite Element Method, Lin-
ear Systems.

2000 AMS subject classifications: 97U99.

1 Introduction

This paper deals with some aspects of the classic Schwarz alternating
method. There are analyzed ways how to arrange with the deceleration of
algorithms if the stepsize of a mesh for the finite element method is de-
creasing. The standard two-level method is described and some alternative
approaches to solve a number of local problems by the same method are
proposed.
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2 The Schwartz alternating method

As a model problem we will solve a Poisson problem

−4u(x) = f(x), x ∈ Ω ⊆ Rd.

We use the finite element method to solve the problem. It leads to a linear
system

Ax = b . (1)

Consider functions ϕ1, . . . , ϕn as a basis and denote by Vn = span(ϕ1, . . . ,
ϕn) the linear hull of the functions, that is the set of all linear combinations
of the functions. Let us remind that Aij = a(ϕi, ϕj) and

a(u, v) =

∫
Ω

uv dΩ.

The matrix A for our problem is symmetric and positive definite. More-
over, for many interesting choices of the basis of Vn, the matrix A is sparse,
but large.

One of the possible strategies to solve the system (1) is to use a sparse
version of LU-decomposition. In most cases, fill-in which takes place along
with Gaussian elimination makes such an approach unusable. A usual choice
is then to use some iterative method. Since our matrix is a symmetric positive
definite, it seems to be more advantageous to employ the conjugate gradient
method. But this choice is still problematic because the amount of the work
is rapidly increasing with the size of the problem. Therefore there is then
more convenient to use a preconditioned conjugate gradient method with an
appropriate preconditioner.

As a preconditioner we can choose a slightly modified the Schwarz alter-
natig method, see [2]. The original description is in [1]. We can see it as
a kind of some block symmetrized Gauss-Seidel method.

2.1 Formulation of the algorithm

Let us denote by nd the number of domains. For each i ∈ I = {1, 2, . . . , nd}
we define an index set Ii =

{
i
(i)
1 , i

(i)
2 , . . . , i

(i)
ni

}
. These index sets realize a cov-

ering of I, i. e. I =

nd⋃
i=1

Ii. This covering is not required to be disjoint. We

define subspaces of Vn so that the subspace V
(i)
n is the linear hull of a cor-

responding part of the basis of Vn, that is V
(i)
n = span

j ∈ Ii
{ϕj} . Finally we
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define subdomains
Ω(i) =

⋃
j∈Ii

supp (ϕj) , (2)

where supp (f) denotes the support of a function f . The sizes of individual
domains are n1, . . . , nnd . We can write A(i) = A(Ii, Ii) in terms of Matlab-like

notation. Matrix interpretation of local problems is N (i) = {n(i)
k,l} ∈ R

n×ni ,
where

n
(i)
k,l =

{
1 if l = i

(i)
k ,

0 otherwise.

Then
A(i) = N (i)TAN (i). (3)

The following algorithm describes the transition from x(k) to x(k+1).

Algorithm 2.1. One step of the symmetrized Schwarz method

x
(k+ 0

2nd
)

:= x(k)

for i = 1, . . . , nd

r := b− Ax(k+ i−1
2nd

)

r̃ := N (i)T r
A(i) := N (i)TAN (i)

(♣) Solve A(i)c = r̃, i. e. c = A(i)−1
r̃

x
(k+ i

2nd
)

:= x
(k+ i−1

2nd
)
+N (i)c

end for (4)

for i = 1, . . . , nd (5)

r := b− Ax(k+ 1
2

+ i−1
2nd

)

r̃ := N (nd+1−i)T r
A(nd+1−i) := N (nd+1−i)TAN (nd+1−i)

(♣) Solve A(nd+1−i)c = r̃

x
(k+ 1

2
+ i

2nd
)

:= x
(k+ 1

2
+ i−1

2nd
)
+N (nd+1−i)c

end for
end algorithm

The method used in the Algorithm 2.1 can also be viewed as a variant of the
block Gauss-Seidel method, but with the fact that the individual blocks can
overlap.
Put

P (i) = A1/2N (i)(N (i)TAN (i))−1N (i)TA1/2. (6)
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Then

P (i)2
= A1/2N (i)(N (i)TAN (i))−1N (i)TA1/2A1/2N (i)(N (i)TAN (i))−1N (i)TA1/2

= A1/2N (i)A(i)−1
A(i)A(i)−1

N (i)TA1/2

= A1/2N (i)A(i)−1
N (i)TA1/2 = P (i).

It follows that P (i) is a projection, moreover A-orthogonal. Further P (i) =

P (i)T , then the projection is symmetric.

Let us denote
ε(k) = x(k) − x∗,

where x∗ denotes the solution of the problem. Errors are analyzed in terms
of the energy norm ||x||A =

√
(x, x)A, where (x, y)A = xTAy.

Let us note that A is a symmetric positive definite matrix and A(i) is
a principal minor of A. Then A(i) is also a symmetric positive definite matrix.

We have

||ε(k)||2A = ε(k)TAε(k) = ε(k)TA1/2A1/2 ε(k) = ||A1/2ε(k)||2A.

Thus

A1/2ε(k−1) = (I − P (1)) . . . (I − P (nd))(I − P (nd)) . . . (I − P (1))A1/2ε(k)

= M A1/2ε(k). (7)

Since I−P (i) is a symmetric A−orthogonal projection then M is a symmetric
matrix. And moreover, M is, according to the definition, a positive semi-
definite matrix. It can be proved that M is even a positive definite matrix.

2.2 Dependence on the dimension of Vn

For the following considerations we suppose that piecewise linear finite
elements are used. In that case n = O(1/hd), where h is the stepsize of
a mesh. If we try to keep domains with the same geometry, the amount of
elements will increase as O((H/h)d), where H is the typical size of a domain.
Then, the amount of iterations is the same, but the amount of work for one
step will increase.

On the other hand, when we keep equal the number of elements inside
a domain, then the size of the domain will decrease and then the number
of domains will increase. This leads to increasing amount of iterations and
slightly increasing work for one full step.

Usual solution is to use a coarse space. It typically means to replace each
domain by a base function. We create the coarse space and the solution of the
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problem for the corrections on the coarse level is inserted between steps (4)
and (5) of the Algorithm 2.1. A detailed analysis is introduced, for example,
in [2]. When it is used in a right way, we get O(1) convergence speed.

2.3 Basic convergence

Let us denote
E(x) = xTAx− 2xT b. (8)

It is known that Ax = b if and only if E(x) assumes its minimum at x.
Each step in Algorithm 2.1 means the minimization of functional (8) on
a corresponding subspace and the following inequality holds for the successive
terms of the minimizing sequence

E(x(k+1)) ≤ E(x(k)). (9)

We prove the following equivalence:

Lemma 2.1. The equality in (9) occurs⇐⇒ x(k) is the accurate solution of
Ax(k) = b.

Proof. It is clear that an accurate solution is equivalent to r(k) = 0,
where r(k) = b− Ax(k).

We prove one direction of the equivalence: Suppose that x(k) is an accurate
solution and we prove the equality required. It is easy to see that if x(k) is
an accurate solution then r(k) = 0 and then the equality in (9) occurs.

Now we prove the opposite direction of the equivalence. We apply the proof
by contradiction: suppose that x(k) is not an accurate solution and sup-
pose that the equality in (9) holds. If x(k) is not an accurate solution then

r(k) 6= 0. Then there exists the least index im such that N (im)T r(k) 6= 0. It
causes a decrease at this step of Algorithm 2.1 and then the strict inequality
E(x(k+1)) < E(x(k)). This contradicts to the assumption of equality in (9)
and the proof of the equivalence in Lemma 2.1 is complete. 2

3 Recursive approach

Another possibility comes from the idea that the local problems are con-
ceptually identical as the original one. It opens a possibility to use the same
Schwarz algorithm for solving them. It means to retain domains in the same
geometry, then Ω(i) in (2) remain unchanged. On the other hand it means
that the number of degrees of freedom for a domain increases. In this case
we recommend to use the same algorithm for each domain separately.
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3.1 Two - level variant

We start from the Algorithm 2.1, and we replace both steps denoted by
(♣) in the algorithm by an iterative solution for c. It means that we replace

A(i)−1
r̃ by an approximate solution of the problem A(i)c = r̃. As the method

we use again the algorithm 2.1 with ` steps.
Then the error operator has the form

M̃ = (I − P̃ (1)) . . . (I − P̃ (nd))(I − P̃ (nd)) . . . (I − P̃ (1)),

where
P̃ (i) = A1/2N (i)Q̃(i)N (i)TA1/2. (10)

Expression (N (i)TAN (i))−1 in (6) is for short denoted byQ(i) and it is replaced
in (10) by

Q̃(i) = A(i)−1/2
[
I −

(
I − A(i)1/2

M (i)A(i)1/2
)`]

A(i)−1/2
, (11)

where A(i) is from (3) and M (i) denotes the error operator to the algorithm 2.1
applied on the i−th domain. This replacement comes from the following:

Let us solve a problem Ax = b and let us use the following iterative
method

x(i+1) = x(i) +M(b− Ax(i)),

where M is a symmetric positive definite matrix. The initial approximation
is

x(0) = 0. (12)

Let x∗ = A−1b. Then

x∗ − x(i+1) = x∗ − x(i) −M(b− Ax(i)) = (I −MA)(x∗ − x(i))

and then

A1/2(x∗ − x(i+1)) = (I − A1/2MA1/2)A1/2(x∗ − x(i)).

After `−iterations we get

A1/2(x∗ − x(`)) = (I − A1/2MA1/2)`A1/2(x∗ − x(0))

and thus

x∗ − x(`) = A−1/2(I − A1/2MA1/2)`A1/2(x∗ − x(0)).
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Since x(0) = 0 we get

x∗ − x(`) = A−1/2(I − A1/2MA1/2)`A1/2x∗ = A−1/2(I − A1/2MA1/2)`A−1/2b.

Thus

x(`) = x∗ − A−1/2(I − A1/2MA1/2)`A−1/2b

= A−1/2
[
I −

(
I − A1/2MA1/2

)`]
A−1/2b

and that is why the form of Q̃(i) in (11) and P̃ (i) in (10).

3.2 Recursive - multilevel method

When we use a two-level method we need to compute P̃ (i) in (10) and

for it there is required to know Q̃(i) from (11). For Q̃(i) there is necessary
to know M (i) and its realization comes from the solution of a local problem
on subdomains of the i−th domain. In case when these local problems are
still large then the process may be repeated again and a two-level method
becomes a recursive-multilevel method.

As to convergence of a recursive variant of the method the same facts as
in section 2.3 can be used. Then we can state that a recursive - multilevel
method converges as well and we have proved the following theorem.

Theorem 3.1. A recursive - multilevel method is convergent.

4 Cost analysis

4.1 Two levels

The work required for solving a problem of size n is

W = K n(1+β)

with K and β positive constants. Let α be a relative overlapping in one
dimension. The number of domains is nd. Then the size of a local problem
is

nloc =
n

nd
(1 + α)d

and the work needed for its solving

W = K

(
n

nd
(1 + α)d

)(1+β)

.
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Thus the work for one iteration is

W = 2ndK

(
n

nd
(1 + α)d

)(1+β)

=
2(1 + α)d(1+β)

nβd
K n(1+β)

and for ` iterations on this level

W = 2`
(1 + α)d(1+β)

nβd
K n(1+β).

4.2 k levels

In the k−th level we repeat the previous considerations. We have nkd

subdomains and the size of one subdomain is nloc,k = n

(
1 + α

nd

)k
. The

problem is solved on each subdomain (2`)k times. Total work is

W = (2`)knkdK

(
n

(
1 + α

nd

)k)(1+β)

= K
(

2` n−βd (1 + α)(1+β)
)k
n(1+β).

4.3 Full recursion

We want to find such k that nloc,k = 1. We take the greatest possible k.
This is

k =
lnn

lnnd − ln(1 + α)
.

We obtain

W = K
(

2` n−βd (1 + α)(1+β)
) lnn

lnnd−ln(1+α)
n(1+β)

which is

W = K exp
(ln 2+ln `−β lnnd+(1+β) ln(1+α)) lnn

lnnd−ln(1+α)
+(1+α) lnn

.

This expression can be improved and after some manipulations we get

W = K n(1+γ),

with

γ =
ln(1 + α) + ln 2 + ln `

lnnd − ln(1 + α)
. (13)

We can see from (13) that it is possible to achieve γ arbitrary small by an
appropriate choice of α, `, nd.
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5 Conclusion

An alternative process to the classic two-level method with a coarse space
is proposed in this paper. One of the significant advantages of the method
presented here is the fact that we can extremely reduce the memory require-
ments if this is called for.
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Abstract

In practical applications relating to business and management sciences,
there are many variables that, for their own nature, are better described by
a pair of ordered values (i.e. financial data). By summarizing this mea-
surement with a single value, there is a loss of information; thus, in these
situations, data are better described by interval values rather than by single
values. Interval arithmetic studies and analyzes this type of imprecision;
however, if the intervals has no sharp boundaries, fuzzy set theory is the
most suitable instrument. Moreover, fuzzy regression models are able to
overcome some typical limitation of classical regression because they do
not need the same strong assumptions. In this paper, we present a review
of the main methods introduced in the literature on this topic and introduce
some recent developments regarding the concept of randomness in fuzzy re-
gression.

Keywords: fuzzy data; fuzzy regression; fuzzy random variable; tools
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1 Introduction
Regression analysis offers a possible solution to study the dependence between

two sets of variables. Standard classical statistical linear regressions take the form
[27]:

yi = b0 + b1xi1 + b2xi2 + ...+ bjxij + ....+ bPxiP + ui (1)

where:

• i=1,.....,N is the i-th observed unit;

• j=1,...,P is the j-th observed variable;

• yi is the dependent variable, observed on N units;

• xij are the P independent variables observed on N units;

• b0 is the crisp intercept and bj are the P crisp coefficients of the P variables;

• ui are the random error terms that indicate the deviation of Y from the
model;

• yi, xij , bj , ui are all crisp values.

In classical regression model it is assumed that:

• E(ui) = 0

• σ2
ui

= σ2

• σui,uj
= 0 ∀ i, j with i 6= j

In matrix form, the classical regression model is expressed as:

y = Xβ + u (2)

where y = (y1,y2, ...,yN)′, b = (b1,b2, ...,bP)′, u = (u1,u2, ...,uN)′ are
vectors and X is a matrix:

X =


1 x11 . . . x1P
1 x21 . . x2P
1 . . . . .
1 . . . . .
1 xN1 . . . xNP


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The aim of statistical regression is to find the set of unknown parameters so
that the model gives is a good prediction of the dependent variable Y. The most
widely used regression model is the Multiple Linear Regression Model (MLRM),
as well as the Ordinary Least Squares (OLS) [12] is the most widespread estima-
tion procedure. Under the OLS assumptions the estimates are BLUE (Best Linear
Unbiased Estimator), as stated by the famous Gauss-Markov theorem.

OLS is based on the minimization of the sum of squared deviations:

min (y −Xb)′(y + Xb) (3)

The optimal solution of the minimization problem is the following vector:

b̂ = (X′X)−1X′y (4)

The OLS model is comfortable but its assumptions are every restrictive. Sev-
eral phenomena violate these assumptions causing biased and inefficient estima-
tors [9]. In particular the assumptions E(u|X) ≈ N(0, σ2I) is very strong and
rarely it is respected in real phenomena. Moreover in case of ”quasi” multi-
collinearity (many highly correlated explanatory variables), although this does not
violate OLS assumption there is a bad impact on the variance of B. In these cir-
cumstance the OLS estimators are efficient and unbiased but have large variance,
making estimation useless from a practical point of view.

The effects of the quasi multi-collinearity are more evident when the sample
size is small [1]. The generally proposed solution consists in removing correlated
exploratory variables. This solution is unsatisfying in many applications fields
where the user would keep all variables in the model.

In general, we can observe that classical statistical regression has many useful
applications but presents troubles in the following situations [26]:

• Number of observations is inadequate (small data set);

• Difficulties verifying distribution assumptions;

• Vagueness in the relationship between input and output variables;

• Ambiguity of events or degree to which they occur;

• Inaccuracy and distortion introduced by linearization;

Furthermore, there are many variables that, for their own nature, are better
described by a pair of ordered values, like daily temperatures or financial data. By
summarizing this measurement with a single value, there is a loss of information.
In these situations data are better described by interval values rather than by single

47



Fabrizio Maturo

values. Interval arithmetic studies and analyzes this type of imprecision; but if the
intervals has no sharp boundaries, fuzzy set theory is the better tool. In particular
fuzzy regression model are able to overcome some typical limitation of classical
regression because they don’t need the same strong assumptions. Furthermore,
some nuanced concepts that exist in economic and social sciences, need to be
necessarily treated with linguistic variables, which for their nature, are imprecise
concepts.

2 Fuzzy Linear Regression Models (FLR)
There are two general ways, not mutually exclusive, to develop a fuzzy regres-

sion model:

• Models where the relationship of the variables is fuzzy;

• Models where the variables themselves are fuzzy;

Therefore fuzzy linear regression (FLR) can be classified in:

• Partially fuzzy linear regression (PFLR), that can be further divided into:

– PFLR with fuzzy parameters and crisp data;

– PFLR with fuzzy data and crisp parameters;

• Totally fuzzy linear regression (TFLR) where data and parameters are both
fuzzy.

Fuzzy Least Squares Regression is more close to the traditional statistical ap-
proach. In fact, following the Least Squares line of thought [13], the aim is to
minimize the distance between the observed and the estimated fuzzy data. This
approach is referred as Fuzzy Least Squares Regression (FLSR).

In case of one independent variable, the model take the form:

ỹi = b0 + b1x̃i + ũi i=1,2,...,N (5)

where:

• i=1,.....,N is the i-th observed unit;

• yi is the dependent fuzzy variable, observed on N units;

• xi is the independent fuzzy variable, observed on N units;
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Figure 1: Relation between output and input variables

• b0 and b1 are the crisp intercept and the crisp regression coefficient;

• ui are the fuzzy random error terms;

From a graphical point of view [26] the relation between output and input
variables can be represented as shown in Fig.1

In case of several independent variables, the model take the form:

ỹi = b0 + b1x̃i1 + b2x̃i2 + ...+ bjx̃ij + ....+ bP x̃iP + ũi (6)

where:

• i=1,.....,N is the i-th observed unit;

• j=1,...,P is the j-th observed variable;

• yi is the dependent fuzzy variable, observed on N units;

• xij are the P independent fuzzy variables, observed on N units;

• b0 is the crisp intercept and bj are the P crisp regression coefficients mea-
sured for the P fuzzy variables;

• ui are the fuzzy random error terms;

Limiting the reasoning to the first model, the error term can be expressed as
follows:

ũi = ỹi − b0 − b1x̃i i=1,2,...,N (7)
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Therefore, from a least square perspective, the problem becomes as follows:

min
N∑
i=1

[ỹi − b0 − b1x̃i]2 i=1,2,...,N (8)

Many criteria for measuring this distance have been proposed over the years;
however, the most common are two methods:

• The Diamond’s approach;

• The compatibility measures approach.

2.1 FLSR using distance measures
The Diamond’s approach is also known as fuzzy least squares regression using

distance measures. This is the most close approach to the traditional statistical
one. Following the Least Squares line of thought, the aim is to minimize the
distance between the observed and the estimated fuzzy data, by minimizing the
output quadratic error of the model. Since the model contains fuzzy numbers the
minimization problem considers distances between fuzzy numbers [5, 17, 20, 15,
19, 18].

Diamond defined an L2-metric between two triangular fuzzy numbers; it mea-
sures the distance between two fuzzy numbers based on their modes, left spread
and right spread as follows

d[(c1, l1, r1), (c2, l2, r2)]
2 =

= (c1 − c2)2 + [(c1 − l1)− (c2 − l2)]2 + [(c1 + r1)− (c2 + r2)]
2 (9)

The methods of Diamond are rigorously justified by a projection-type theorem
for cones on a Banach space containing the cone of triangular fuzzy numbers,
where a Banach space is a normed vector space that is complete as a metric space
under the metric d(x, y) = ||x− y|| induced by the norm [25].

In the case of crisp coefficients and fuzzy variables, the problem is the follow-
ing:

min
N∑
i=1

d[ỹi
∗ − ỹi]2 i=1,2,...,N (10)

where,

ỹi
∗ = b0 + b1x̃i (11)
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Figure 2: Compatibility measure

therefore the optimization problem can be written as follows:

min
N∑
i=1

d[b0 + b1x̃i − ỹi]2 i=1,2,...,N (12)

Using Diamond’s difference in this minimization problem, we can obtain the
parameters. If the solutions exist, it is necessary to solve a system of six equa-
tions in the same number of unknowns; of course, these equations arise from the
derivatives being set equal to zero.

2.2 FLSR using compatibility measures

The second type of fuzzy least squares regression model is based on Celmins’s
compatibility measures [3]. A compatibility measure can defined by

γ(Ã, B̃) = maxmin(µA(x), µB(x)) (13)

This index is included in the interval [0,1] as shown in Fig. 2. A value of ”0”
means that the membership functions of the fuzzy numbers A and B are mutually
exclusive as shown in Fig. 3. A value of ”1” means that the membership functions
A coincides with that one of B as shown in Fig.4.

The basic idea is to maximize the overall compatibility between data and
model. Thus, the objective may be reformulated in a minimization problem with
the following objective function:
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Figure 3: Zero compatibility

Figure 4: Max compatibility
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min
N∑
i=1

[1− γi]2 i=1,2,...,N (14)

3 Fuzzy regression models with fuzzy random vari-
ables

Recent studies have reintroduced the concept of Fuzzy Random Variables
(FRVs) [24] firstly introduced by Puri and Ralescu [23]. The need for FRVs arises
when the data are not only affected by imprecision but also by randomness [11].
Several papers deal with this topic that it is called fuzzy-probabilistic approach. It
consists in explicitly taking into account randomness for estimating the regression
parameters and assessing their statistical properties [22, 7, 8].

The membership function of a fuzzy number can be expressed, in term of
spreads as:

µÃ(x) =


LAm−x

Al
for x ≤ Am, Al > 0

1 for x ≤ Am, Al = 0

Rx−Am

Ar
for x > Am, Ar > 0

0 for x > Am, Ar = 0

(15)

where the functions L, R : <− > [0, 1] are convex upper semi-continuous
functions so that L(0) = R(0) = 1 and L(z) = R(z) = 0, for all z ∈ </[0, 1] [6]
and Am is the center, Al and Ar are the left and the right spread. Of course these
functions must be chosen by the researcher in advance and must be the same for
all the data.

In particular, for a triangular fuzzy number we obtain:

µÃ(x) =


0 for x ≤ Am − Al

1− Am−x
Al

for Am − Al ≤ x ≤ Am

1− x−Am

Ar
for Am ≤ x ≤ Am + Ar

0 for x ≥ Am + Ar

(16)

A distance for these functions [21] could be:

D2(Ã, B̃) = (Am−Bm)2+[(Am−λAl)−(Bm−λBl)]
2+[(Am+ρAr)−(Bm+ρBr)]

2

(17)
where,
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λ =

∫ 1

0

L−1(α)dα

ρ =

∫ 1

0

R−1(α)dα

These functions consider the shape of the membership functions; for example,
for triangular fuzzy numbers λ and ρ = 1/2.

To avoid the problem of the non-negativity of the spreads of Ỹ , it is possible
to solve a non negative regression problem [14], or to transform the spreads of Ỹ
by means of the centers and the spreads of the P regressors X . In this context, we
use the latter method introducing two invertible functions [7]:

g : (0,+∞) −→ <

h : (0,+∞) −→ <

Thus the linear regression model take the form


Ym = xb′m + am + um

g(Yl) = xb′l + al + ul

h(Yr) = xb′r + ar + ur

(18)

where ul,um,ur are the real valued random variables with E(ul|(x)) = 0,
E(um|(x)) = 0, E(ur|(x)) = 0.

The row vector of length 3p of all the components of the regressors is:

x = (xm1,xl1,xr1, .....,xmP,xlP,xrP)

The row vectors of length 3p of the parameters related to x are:

bm = (bmm1,bml1,bmr1, ...,bmmP,bmlP,bmrP)

bl = (blm1,bll1,blr1, ...,blmP),bllP,blrP)

br = (brm1,brl1,brr1, ...,brmP,brlP,brrP)

The generic element bijt is the regression coefficient between the component
iε[m, l, r] of Ỹ , where m,l,r refer to center and the transformed spread of Ỹ , and
the component jε[m, l, r] of the regressor x̃t with t=1,....,P, where m,l,r refer to
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the corresponding center, left spread and right spread. For example bmr2 is the
relationship between the right spread of x̃2 and the center of Y. Of course, am, al,
and ar are the intercepts.

The covariance matrix of x is denoted by:

Σ(x) = E[(x− E(x))′(x− E(x))] (19)

The covariance matrix of um, ul, ur is indicated with Σ and contains the vari-
ances σ2

um
, σ2

ul
and σ2

ur
.

The regression parameters can be expressed as:

bm
′ = [Σ(x)]

−1E[(x− E(x))′(Ym − E(Ym)]

bl
′ = [Σ(x)]

−1E[(x− E(x))′(g(Yl)− E(g(Yl))]

br
′ = [Σ(x)]

−1E[(x− E(x))′(h(Yr)− E(h(Yr))]

am = E(Ym|x)− [Σ(x)]
−1E[(x− E(x))′(Ym − E(Ym)]

al = E(g(Yl)|x)− [Σ(x)]
−1E[(x− E(x))′(g(Yl)− E(g(Yl))]

ar = E(h(Yr)|x)− [Σ(x)]
−1E[(x− E(x))′(h(Yr)− E(h(Yr))]

(20)

Since the total variation of the response can be written in terms of variances
and covariances of real random variables, it can be decomposed in the variation
not depending on the model and that explained by the model. Thus, we can obtain
a determination coefficient for the fuzzy model based on the decomposition of the
total variance given by:

E[D2(Yt, E(Yt)] = E[D2(Yt, E(Yt|x)]+

+ E[D2(E(Yt|x,E(Yt))]
(21)

Therefore, the linear determination coefficient R2 can be defined as:

R2 =
E[D2(E((Yt|x),E(Yt))]

E[D2(Yt, E(Yt)]
=

= 1− E[D2(Yt, E(Yt|x)]

E[D2(Yt, E(Yt)]

(22)

The meaning of this index is the same of the classical regression model. The
estimation problem of the regression parameters is faced by means of the LS cri-
terion. As shown in [6], applying the appropriate substitutions and using the con-
cept of distance between two fuzzy numbers, like in the Diamond’s approach, it
is possible to find the equation of the estimators of all parameters.
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4 Conclusions
Fuzzy regression models are able to overcome some limitations of classical

regression because they do not need the same strong assumptions. In this paper,
we have presented a review of the main methods introduced in the literature on
this topic and some recent developments regarding the concept of randomness in
fuzzy regression. In practical applications relating to business and management
sciences, fuzzy regression models with fuzzy random variables are more suitable
for the characteristics of the data. However, some of the main issues of Zadeh’s
operations with these models are the following: the addition and the multiplication
between fuzzy numbers lead to a considerable increase of the spreads; the mul-
tiplication of two symmetric fuzzy numbers does not provide a symmetric fuzzy
number or at least a fuzzy number with equal spreads; spreads of Zadeh’s product
depend heavily on the modes of the numbers; some important algebraic proper-
ties, such as the distributive property, are valid only in particular circumstances;
the product of two triangular fuzzy numbers does not provide a triangular fuzzy
number. Therefore, alternative operations in order to overcome some problems
connected to the addition and the product between fuzzy numbers in fuzzy linear
regression models are strongly necessary. Moreover, our research prospects in-
clude considering finite geometric spaces [16, 2], multivalued functions [4] and
algebraic hyperoperations [10] in fuzzy regression models.
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Abstract

This contribution, which is a follow-up to author’s paper [1] and [2] deal-
ing with the sums of the series of reciprocals of some quadratic polynomials,
deals with the series of reciprocals of the quadratic polynomials with differ-
ent negative integer roots. We derive the formula for the sum of this series
and verify it by some examples evaluated using the basic programming lan-
guage of the CAS Maple 16.

Keywords: sequence of partial sums, telescoping series, harmonic num-
ber, computer algebra system Maple.

2010 AMS subject classifications: 40A05, 65B10.

1 Introduction and basic notions

Let us recall the basic terms, concepts and notions. For any sequence {ak} of
numbers the associated series is defined as the sum

∞∑
k=1

ak = a1 + a2 + a3 + · · · .
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The sequence of partial sums {sn} associated to a series
∞∑
k=1

ak is defined for each

n as the sum of the sequence {ak} from a1 to an, i.e.

sn =
n∑

k=1

ak = a1 + a2 + · · ·+ an .

The series
∞∑
k=1

ak converges to a limit s if and only if the sequence of partial sums

{sn} converges to s, i.e. lim
n→∞

sn = s. We say that the series
∞∑
k=1

ak has a sum s

and write
∞∑
k=1

ak = s.

The telescoping series is any series where nearly every term cancels with a
preceding or following term, so its partial sums eventually only have a fixed num-
ber of terms after cancellation. Telescoping series are not very common in math-
ematics but are interesting to study. The method of changing series whose terms
are rational functions into telescoping series is that of transforming the rational
functions by the method of partial fractions.

For example, the series
∞∑
k=1

1

k2 + k
has the general nth term

an =
1

n(n+ 1)
=
A

n
+

B

n+ 1
.

After removing the fractions we get the equation 1 = A(n+ 1) + Bn. Solving it
for A and B we obtain an = 1/n− 1/(n+ 1). After that we arrange the terms of
the nth partial sum sn = a1 + a2 + · · · + an in a form where can be seen what is
cancelling. Then we find the limit of the sequence of the partial sums sn in order
to find the sum s of the infinite telescoping series as s = lim

n→∞
sn. In our case we

get

sn =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+· · ·+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

So we have s = lim
n→∞

(
1− 1

n+ 1

)
= 1.

The nth harmonic number is the sum of the reciprocals of the first n natural
numbers:

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
k=1

1

k
.
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The values of the sequence {Hn− lnn} decrease monotonically towards the limit
γ

.
= 0.57721566, which is so-called the Euler-Mascheroni constant. Basic in-

formation about harmonic numbers can be found e.g. in the web-sites [3] or [4],
interesting information are included e.g. in the paper [5]. First ten values of the
harmonic numbers are presented in this table:

n 1 2 3 4 5 6 7 8 9 10

Hn 1
3

2

11

6

25

12

137

60

49

20

363

140

761

280

7129

2520

7381

2520

2 The sum of the series of reciprocals of the quadratic
polynomial with different negative integer roots

Now, we deal with the series formed by reciprocals of the normalized quadratic
polynomial (k − a)(k − b), where a < b < 0 are integers. Let us consider the
series

∞∑
k=1

1

(k − a)(k − b)
,

and determine its sum s(a, b).
We express the nth term an of this series as the sum of two partial fractions

an =
1

(n− a)(n− b)
=

A

n− a
+

B

n− b
.

From the equality of two linear polynomials 1 = A(n− b) +B(n− a) for n = a
we get A = 1/(a− b) and for n = b we get B = 1/(b− a) = −1/(a− b). So we
have

an =
1

a− b

(
1

n− a
− 1

n− b

)
=

1

b− a

(
1

n− b
− 1

n− a

)
. (1)

For the nth partial sum of the given series so we get

sn =
1

b− a

[(
1

1− b
− 1

1− a

)
+

(
1

2− b
− 1

2− a

)
+ · · ·

· · ·+
(

1

n− 1− b
− 1

n− 1− a

)
+

(
1

n− b
− 1

n− a

)]
.

The first terms that cancel each other will be obviously the terms for which for
the suitable index ` it holds 1/(1−a) = 1/(`−b). Therefore the last term from the
beginning of the expression of the nth partial sum sn, which will not cancel, will
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be the term 1/(−a), so that the first terms from the beginning of the expression
the sum sn, which will not cancel, will be the terms generating the sum

1

1− b
+

1

2− b
+ · · ·+ 1

−a
.

Analogously, the last terms that cancel each other will be the terms for which
for the suitable index m it holds 1/(n − b) = 1/(m − a). Therefore the first
term from the ending of the expression of the nth partial sum sn, which will not
cancel, will be the term 1/(n + 1 − b), so that the last terms from the ending in
the expression of the sum sn, which will not cancel, will be the terms generating
the sum

− 1

n+ 1− b
− 1

n+ 2− b
− · · · − 1

n− a
.

After cancelling all the inside terms with the opposite signs we get the nth partial
sum

sn =
1

b− a

(
1

1− b
+

1

2− b
+ · · ·+ 1

−a
− 1

n+ 1− b
− 1

n+ 2− b
−· · ·− 1

n− a

)
.

Because for integer c it holds lim
n→∞

1

n+ c
= 0, then the searched sum, where

a < b < 0, is

s(a, b) = lim
n→∞

sn =
1

b− a

(
1

1− b
+

1

2− b
+ · · ·+ 1

−a

)
=

=
1

b− a

[
1

1
+

1

2
+ · · ·+ 1

−a
−
(
1

1
+

1

2
+ · · ·+ 1

−b

)]
,

so we get

Theorem 2.1. The series
∞∑
k=1

1

(k − a)(k − b)
, where a < b < 0 are integers, has

the sum
s(a, b) =

1

b− a
(
H−a −H−b

)
, (2)

where Hn is the nth harmonic number.

Corolary 2.1. For the sum s(a, b) above it obviously hold:

1. s(a, b) = s(b, a) ,

2. s(a, a+ 1) = H−a −H−a−1 =
1

−a
,
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3. s(a, a+i) =
1

i

(
H−a−H−a−i

)
=

1

i

(
1

−a− i+ 1
+

1

−a− i+ 2
+· · ·+ 1

−a

)
,

i ∈ N .

Remark 2.1. Let us note, that the formula (2) holds also in the case a < b = 0.
Because H0 is defined as 0, it has the form

s(a, 0) =
1

0− a
(
H−a −H0

)
=
H−a
−a

. (3)

Example 2.1. The series

∞∑
k=1

1(
k − (−5)

)(
k − (−2)

) =
∞∑
k=1

1

(k + 2)(k + 5)
,

where a = −5, b = −2, has the nth partial sum

sn =
1

3

(
1

3
+

1

4
+

1

5
− 1

n+ 3
− 1

n+ 4
− 1

n+ 5

)
.

By the relation s(−5,−2) = lim
n→∞

sn, since lim
n→∞

1

n+ c
= 0, or by Theorem 2.1

we get its sum

s(−5,−2) = 1

3

(
1

3
+

1

4
+

1

5

)
=

1

3

(
H5 −H2

)
=

1

3

(
137

60
− 3

2

)
=

47

180
= 0.261.

Example 2.2. The series

∞∑
k=1

1(
k − (−5)

)
k
=
∞∑
k=1

1

k(k + 5)
,

where a = −5, b = 0, has the nth partial sum

sn =
1

5

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
− 1

n+ 1
− 1

n+ 2
− 1

n+ 3
− 1

n+ 4
− 1

n+ 5

)
.

By the relation s(−5, 0) = lim
n→∞

sn, since lim
n→∞

1

n+ c
= 0, or by Theorem 2.1, or

by the Remark 2.1 we get its sum

s(−5, 0) = 1

5

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5

)
=
H5

5
=

137/60

5
=

137

300
= 0.456 .
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3 Numerical verification
We solve the problem to determine the values of the sum

s(a, b) =
∞∑
k=1

1

(k − a)(k − b)

for a = −1,−2, . . . ,−9 and b = a + 1, a + 2, . . . ,−8. We use on the one hand
an approximative direct evaluation of the sum

s(a, b, t) =
t∑

k=1

1

(k − a)(k − b)
,

where t = 108, using the basic programming language of the computer algebra
system Maple 16, and on the other hand the formula (2) for evaluation the sum
s(a, b). We compare 45 = 9 + 8 + · · · + 1 pairs of these ways obtained sums
s(a, b, 108) and s(a, b) to verify the formula (2). We use following simple proce-
dures hnum, rp2abneg and two for statements:

hnum:=proc(h)
local i,s; s:=0;
if h=0 then s:=0 else
for i from 1 to h do

s:=s+1/i;
end do;
end if;

end proc:

rp2abneg:=proc(a,b,n)
local k,sab,sumab; sumab:=0;
sab:=(hnum(-a)-hnum(-b))/(b-a);
print("n=",n,"s(",a,b,")=",evalf[20](sab));
for k from 1 to n do

sumab:=sumab+1/((k-a)*(k-b));
end do;
print("sum(",a,b,")=",evalf[20](sumab),

"diff=",evalf[20](abs(sumab-sab)));
end proc:

for i from -1 by -1 to -9 do
for j from i+1 by -1 to -8 do

rp2abneg(i,j,100000000);
end do;

end do;
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The approximative values of the sums s(a, b) rounded to 3 decimals obtained by
these procedures are written into the following table:

s(a, b) a=−1 a=−2 a=−3 a=−4 a=−5 a=−6 a=−7 a=−8 a=−9
b = 0 1.000 0.750 0.611 0.521 0.457 0.408 0.370 0.340 0.314
b=−1 × 0.500 0.417 0.361 0.321 0.290 0.266 0.245 0.229
b=−2 × × 0.333 0.292 0.261 0.238 0.219 0.203 0.190
b=−3 × × × 0.250 0.225 0.206 0.190 0.177 0.166
b=−4 × × × × 0.2000 0.183 0.170 0.159 0.149
b=−5 × × × × × 0.167 0.155 0.145 0.136
b=−6 × × × × × × 0.143 0.134 0.126
b=−7 × × × × × × × 0.125 0.118
b=−8 × × × × × × × × 0.111

Computation of 45 couples of the sums s(a, b, 108) and s(a, b) took over 18 minu-
tes. The absolute errors, i.e. the differences

∣∣s(a, b)−s(a, b, 108)∣∣, have here place
value about 10−8.

4 Conclusion
We dealt with the sum of the series of reciprocals of the quadratic polynomials

with different negative integer roots a and b, i.e. with the series
∞∑
k=1

1

(k − a)(k − b)
,

where a < b < 0 are integers. We derived that the sum s(a, b) of this series is
given by the formula

s(a, b) =
1

b− a
(
H−a −H−b

)
,

where Hn is the nth harmonic number. We verified this result by computing 45
various sums by using the CAS Maple 16.

We also stated that this formula holds also for a < b = 0, when it has the form

s(a, 0) =
1

0− a
(
H−a −H0

)
=
H−a
−a

.

The series of reciprocals of the quadratic polynomials with different negative
integer roots so belong to special types of infinite series, such as geometric and
telescoping series, which sums are given analytically by means of a simple for-
mula.
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Abstract

In this paper, we apply the hyper structure theory to hoop-algebras and
introduce the notion of (quasi) hyper hoop-algebra which is a generalization
of hoop-algebra and investigate some related properties. We also introduce
the notion of (weak)filters on hyper hoop-algebras, and give several prop-
erties of them. Finally, we characterize the (weak) filter generated by a
non-empty subset of a hyper hoop-algebra.

Keywords: Hoop-algebra, (quasi) hyper hoop-algebra, (weak) filter.
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1 Introduction
Hoop-algebras or Hoops are naturally ordered commutative residuated integral

monoids were originally introduced by Bosbach in [7] under the name of comple-
mentary semigroups. It was proved that a hoop is a meet-semilattice. Hoop-
algbras then investigated by Büchi and Owens in an unpublished manuscript [8]
of 1975, and they have been studied by Blok and Ferreirim [2],[3], and Aglianò
et.al. [1], among others. The study of hoops is motivated by their occurrence both
in universal algebra and algebraic logic. Typical examples of hoops include both
Brouwerian semilattices and the positive cones of lattice ordered abelian groups,
while hoops structurally enriched with normal multiplicative operators naturally
generalize the normal Boolean algebras with operators. In recent years, hoop
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theory was enriched with deep structure theorems. Many of these results have a
strong impact with fuzzy logic. Particularly, from the structure theorem of finite
basic hoops one obtains an elegant short proof of the completeness theorem for
propositional basic logic introduced by Hájek in [12]. The algebraic structures
corresponding to Hájek’s propositional (fuzzy) basic logic, BL-algebras, are par-
ticular cases of hoops and MV-algebras, product algebras and Gödel algebras are
the most known classes of BL-algebras. Hypersructure theory was introduced in
1934[13], when Marty at the 8th congress of scandinavian mathematicians, gave
the definition of hypergroup and illustrated some applications and showed its util-
ity in the study of groups, algebraic functions, and rational fraction. Till now,
the hyperstructures have been studied from the theoretical point of view for their
applications to many subject of pure and applied mathematics. Some fields of
applications of the mentioned structures are lattices, graphs, coding, ordered sets,
median algebra, automata, and cryptography[9]. Many researchers have worked
on this area. R.A.Borzooei et al. introduced and studied hyper residuated lattices
and hyper K-algebras in [4],[6] and S.Ghorbani et al.[11], applied the hyper struc-
tures to MV-algebras and introduced the concept of hyper MV-algebra, which is a
generalization of MV-algebra.
In this paper we construct and introduce the notion of (quasi) hyper hoop-algebra
which is a generalization of hoop-algebra. Then we study some properties of this
structure. We also introduce the notion of (weak)filters on hyper hoop-algebras,
and give several properties of them. Finally, we characterize the (weak) filter
generated by a non-empty subset of a hyper hoop-algebra.

2 Preliminaries

In this section, we recall some definitions and theorems in hoop algebras
which will be needed in this paper.

Definition 2.1. [1] A hoop-algebra or a hoop is an algebra (A, ∗,→, 1) of the type
(2, 2, 0) such that, for all x, y, z ∈ A:
(H1) (A, ∗, 1) is a commutative monoid,
(H2) x→ x = 1,
(H3) (x→ y) ∗ x = (y → x) ∗ y,
(H4) x→ (y → z) = (x ∗ y)→ z.

On the hoop A, if we define x ≤ y iff x → y = 1, for any x, y ∈ A, it is
proved that ≤ is a partial order on A. A hoop A is bounded if there is an element
0 ∈ A such that 0 ≤ x for all x ∈ A.
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Proposition 2.2. [1] Let A be a hoop-algebra. Then for every a, b, c ∈ A the
following hold:
(i) (A,≤) is a ∧-semilattice and a ∧ b = a ∗ (a→ b),
(ii) a ≤ b→ c iff a ∗ b ≤ c,
(iii) 1→ a = a,
(iv) a→ 1 = 1, i.e. a ≤ 1,
(v) a→ b ≤ (c→ a)→ (c→ b),
(vi) a ≤ b→ a,
(vii) a ≤ (a→ b)→ b,
(viii) a→ (b→ c) = b→ (a→ c),
(ix) a→ b ≤ (b→ c)→ (a→ c),
(x) a ≤ b implies b→ c ≤ a→ c and c→ a ≤ c→ b.

Now, we recall some basic notions of the hypergroup theory from [9]:
Let H be a non-empty set. A hypergroupoid is a pair (H,�), where � : H ×
H −→ P (H) \ ∅ is a binary hyperoperation on H . If a � (b � c) = (a � b) � c
holds, for all a, b, c ∈ H then (H,�) is called a semihypergroup, and it is said
to be commutative if � is commutative. An element 1 ∈ H is called a unit, if
a ∈ 1�a∩a�1, for all a ∈ H and is called a scaler unit, if {a} = 1�a = a�1,
for all a ∈ A. If the reproduction axiom a � H = H = H � a, for any element
a ∈ H is satisfied, then the pair (H,�) is called a hypergroup. Note that if
A,B ⊆ H , then A�B =

⋃
a∈A,b∈B(a� b).

3 Hyper hoop-algebras
Definition 3.1. Aquasi hyper hoop-algebra or briefly, a quasi hyper hoop is a
non-empty set A endowed with two binary hyperoperations �,→ and a constant
1 such that, for all x, y, z ∈ A satisfying the following conditions:
(HHA1) (A,�, 1) is a commutative semihypergroup with 1 as the unit,
(HHA2) 1 ∈ x→ x,
(HHA3) (x→ y)� x = (y → x)� y,
(HHA4) x→ (y → z) = (x� y)→ z,
A quasi hyper hoop (A,�,→, 1) is called a hyper hoop if the following hold;
(HHA5) 1 ∈ x→ 1,
(HHA6) if 1 ∈ x→ y and 1 ∈ y → x then x = y,
(HHA7) if 1 ∈ x→ y and 1 ∈ y → z then 1 ∈ x→ z.

In the sequel we will refer to the (quasi) hyper hoop (A,�,→, 1) by its uni-
verse A. On (quasi) hyper hoop A, for any x, y ∈ A, we define x ≤ y if and
only if 1 ∈ x → y. If A is a hyper hoop, it is easy to see that ≤ is a partial order
relation on A. Moreover, for all B,C ⊆ A we define B � C iff there exist b ∈ B
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and c ∈ C such that b ≤ c and define B ≤ C iff for any b ∈ B there exists c ∈ C
such that b ≤ c. A (quasi) hyper hoop A is bounded if there is an element 0 ∈ A
such that 0 ≤ x, for all x ∈ A.

In the following examples, we will show that the conditions (HHA5), (HHA6),
and (HHA7) are independent from the other conditions.

Example 3.2. (i) Let A = {1, a, b}. Define the hyperoperations �, and→ on A
as follows:

� 1 a b
1 {1} {a} {a, b}
a {a} {a} {a, b}
b {a, b} {a, b} {b}

→ 1 a b
1 {1} {a, b} {b}
a {b} {1, a, b} {b}
b {1, a, b} {1, a, b} {1, a, b}

Then (A,�,→, 1) is a quasi hyper hoop, but doesn’t satisfy the condition (HHA5).
Since 1 /∈ a→ 1.

(ii) Let A = {1, a, b}. Define the hyperoperations � and→ on A as follows:

� 1 a b
1 {1} {a} {b}
a {a} {a} {a}
b {b} {a} {1}

→ 1 a b
1 {1, b} {a} {1, b}
a {1, b} {1, b} {1, b}
b {1, b} {a} {1, b}

Then (A,�,→, 1) is a quasi hyper hoop, but doesn’t satisfy the condition (HHA6).
Since 1 ∈ b→ 1 and 1 ∈ 1→ b, but 1 6= b.

(iii) Let A = {1, a, b, c}. Define hyperoperations � and→ on A as follows:

� 1 a b c
1 {1} {a} {b} {c}
a {a} {a} {a, b} {a, b}
b {b} {a, b} {b} {b}
c {c} {a, b} {b} {c}

→ 1 a b c
1 {1} {a} {b} {c}
a {1} {a, 1} {1, b, c} {c}
b {1} {a} {1, b, c} {1, b, c}
c {1} {a} {b} {1, b, c}

Then (A,�,→, 1) is a quasi hyper hoop, but doesn’t satisfy the condition
(HHA7). Because 1 ∈ a→ b and 1 ∈ b→ c but 1 /∈ a→ c.
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In the following, we give some examples of (quasi) hyper hoop algebras.

Example 3.3. (i) In any (quasi) hyper hoop (A,�,→, 1), if x � y and x → y
are singletons, for any x, y ∈ A, then (A,�,→, 1) is a hoop. Then (quasi) hyper
hoops are generalizations of hoops.

(ii) Let A = {1}. If we consider 1 → 1 = {1}, 1 � 1 = {1}, then it is clear
that A = (A,�,→, 1) is a (quasi) hyper hoop.

(iii) Let A = {1, a}. Define the hyperoperations � and→ on A as follows:

� 1 a
1 {1} {1, a}
a {1, a} {a}

→ 1 a
1 {1, a} {a}
a {1} {1, a}

Then (A,�,→, 1) is a bounded (quasi) hyper hoop.

(iv) Let A = {1, a, b}. Define the hyperoperations � and→ on A as follows,

� 1 a b
1 {1} {a} {b}
a {a} {a, b} {a, b}
b {b} {a, b} {b}

→ 1 a b
1 {1} {a} {b}
a {1} {1, a, b} {1, b}
b {1} {a} {1, b}

Then (A,�,→, 1) is a bounded (quasi) hyper hoop.

(v) Let A = {1, a, b, c}. Define the hyperoperations � and→ on A as follows:

� 1 a b c
1 {1} {a} {b} {c}
a {a} {a} {a, b, c} {a, c}
b {b} {a, b, c} {b, c} {b, c}
c {c} {a, c} {b, c} {c}
→ 1 a b c
1 {1} {a} {b} {c}
a {1} {1, a} {1, b, c} {1, c}
b {1} {a} {1, b, c} {b, c}
c {1} {a} {b} {1, b, c}
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Then (A,�,→, 1) is a bounded (quasi) hyper hoop.

(vi) Let A = {1, a, b, c}. Define the hyperoperations � and→ on A as follows:

� 1 a b c
1 {1} {a} {b} {c}
a {a} {a} {a, b, c} {a, c}
b {b} {a, b, c} {b, c} {b, c}
c {c} {a, c} {b, c} {c}
→ 1 a b c
1 {1} {a} {b} {c}
a {1} {1, a} {b} {1, c}
b {1} {a} {1, b, c} {b, c}
c {1} {a} {b} {1, b, c}

Then (A,�,→, 1) is an unbounded (quasi) hyper hoop. Hence, (quasi) hyper
hoops may not be bounded, in general.

(vii) Let A = [0, 1]. Define the hyperoperations � and→ on A as follows:

x� y = {1, x, y} x→ y =

{
{1, y} , if x ≤ y,

{y} , otherwise.

Then (A,�,→, 1) is an infinite (quasi) hyper hoop.

Proposition 3.4. Let A be a quasi hyper hoop. Then the following hold, for all
x, y, z ∈ A and B,C,D ⊆ A:
(HHA8) B � C ⇔ 1 ∈ B → C,
(HHA9) (B � C)→ D = B → (C → D),
(HHA10) x� y � {z} ⇔ {x} ≤ y → z,
(HHA11) B � C � D ⇔ B � C → D,
(HHA12) x→ (y → z) = y → (x→ z),
(HHA13) {x} ≤ y → z ⇔ {y} ≤ x→ z,
(HHA14) {x} ≤ (x→ y)→ y,
(HHA15) x� (x→ y)� {y}.

Proof. Let x, y, z ∈ A and B,C,D ⊆ A. Then,
(HHA8): B � C ⇔ there exist b ∈ B and c ∈ C such that b ≤ c i.e. 1 ∈ b →
c⇔ 1 ∈ B → C.
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(HHA9): By (HHA4), the proof is clear.
(HHA10): x � y � {z} ⇔ by (HHA8), 1 ∈ (x � y) → z ⇔ by (HHA4),
1 ∈ x→ (y → z)⇔ by (HHA8), {x} ≤ y → z.
(HHA11): The proof is similar to the proof of (HHA10).
(HHA12): By (HHA4) and (HHA1),

x→ (y → z) = (x� y)→ z = (y � x)→ z = y → (x→ z).

(HHA13): {x} ≤ y → z⇔ by (HHA10), x� y � {z} ⇔ by (HHA1), y � x�
{z} ⇔ by (HHA10), {y} ≤ x→ z.
(HHA14): Since x→ y � x→ y, by (HHA1)and (HHA11), x�(x→ y)� {y}
and so by (HHA11), {x} ≤ (x→ y)→ y.
(HHA15): By (HHA10) and (HHA14), the proof is clear.

Proposition 3.5. Let A be a hyper hoop. Then the following hold, for all x, y, z, t ∈
A and B,C,D ⊆ A,
(HHA16) x� y � {x}, {y},
(HHA17) {y} ≤ x→ y,
(HHA18) if 1 ∈ 1→ x, then x = 1,
(HHA19) x ∈ 1→ x, and x is the maximum element of 1→ x,
(HHA20) 1� 1 = {1},
(HHA21) if A is bounded, then 0 ∈ x� 0,
(HHA22) if B � C ≤ D, then B � D, and {x} ≤ B ≤ {y} implies x ≤ y,
(HHA23) if B ≤ C ≤ D, then B ≤ D, and {x} ≤ {y} ≤ B implies {x} ≤ B,
(HHA24) if B � {x} � C, then B � C, and B � {x} ≤ C implies B � C,
(HHA25) if x ≤ y, then z → x ≤ z → y,
(HHA26) if x ≤ y, then y → z ≤ x→ z,
(HHA27) z → y ≤ (y → x)→ (z → x),
(HHA28) z → y � (x→ z)→ (x→ y),
(HHA29) if x ≤ y, then x� z � y � z,
(HHA30) if x ≤ y and z ≤ t, then x� z � y � t,
(HHA31) (x→ y)� z � x→ (y � z).

Proof. (HHA16): By (HHA2)and(HHA5), {y} ≤ x → x and so by (HHA10),
x � y � {x}. Moreover by (HHA5), {x} ≤ y → y and so by (HHA10),
x� y � {y}.
(HHA17): By (HHA16) and (HHA10), the proof is clear.
(HHA18): Let 1 ∈ 1→ x. Since by (HHA5), 1 ∈ x→ 1, by (HHA6), 1 = x.
(HHA19): For all u ∈ 1→ x by (HHA2), 1 ∈ u→ (1→ x). Then by (HHA12),
1 ∈ 1 → (u → x) and so there exists v ∈ u → x such that 1 ∈ 1 → v. Then
by (HHA18), v = 1. Hence 1 ∈ u → x and so u ≤ x. On the other hand, by
(HHA17), {x} � 1 → x. Then there exists a t ∈ 1 → x such that x ≤ t. Since
for all u ∈ 1 → x we have u ≤ x, by considering u = t, we have t ≤ x ≤ t and
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so by (HHA6), x = t. Hence x ∈ 1 → x and so x is the maximum element of
1→ x.
(HHA20): By (HHA1), 1 is the unit and so 1 ∈ 1 � 1. Let 1 6= a ∈ 1 � 1. Then
1� 1� a and so by (HHA10), 1 ≤ 1→ a. Hence 1 ∈ 1→ a and by (HHA18),
a = 1. Then 1� 1 = {1}.
(HHA21): Let A be bounded. Since by (HHA2), 1 ∈ 0→ 0, we get {x} ≤ 0→ 0,
for all x ∈ A. Then by (HHA10), x � 0 � {0}. Hence since A is bounded, we
get 0 ∈ x� 0.
(HHA22): Straightforward, by (HHA7).
(HHA23): Straightforward, by (HHA7).
(HHA24): Straightforward, by (HHA7).
(HHA25): Let x ≤ y. For all u ∈ z → x we have {u} ≤ (z → x) and so by
(HHA10), u � z � {x}. Since x ≤ y, by (HHA24), u � z � {y} and so by
(HHA10), {u} ≤ z → y. Hence z → x ≤ z → y.
(HHA26): Let x ≤ y. For all u ∈ y → z we have {u} � (y → z) and so by
(HHA13), {y} � u→ z. Since x ≤ y, by (HHA23), {x} � (u→ z). Hence by
(HHA13), {u} � (x→ z) and so y → z ≤ x→ z.
(HHA27): For all u ∈ z → y we have {u} � z → y and so by (HHA10) and
(HHA14), u � z � {y} � (y → x) → x. Hence by (HHA24) and (HHA10),
{u} � z → ((y → x) → x) and so by (HHA12), {u} � (y → x) → (z → x).
Therefore, z → y ≤ (y → x)→ (z → x).
(HHA28): By (HHA27), (x → z) � (z → y) → (x → y). Hence by (HHA13),
(z → y)� (x→ z)→ (x→ y).
(HHA29): Let x ≤ y. Since y � z � y � z, by (HHA10), {y} ≤ z → (y � z).
Hence by (HHA23), {x} � z → (y� z) and so by (HHA10), (x� z)� (y� z).
(HHA30): Let x ≤ y and z ≤ t. Since z ≤ t, by (HHA29), y � z � y � t. Then
by (HHA10), {y} ≤ z → (y � t). Hence by (HHA23), {x} ≤ z → (y � t) and
so by (HHA10), x� z � y � t.
(HHA31): Since x→ y � x→ y, by (HHA10), (x→ y)� x� {y}. Hence by
(HHA29), (x → y) � x � z � y � z. Therefore, by (HHA10), (x → y) � z �
x→ (y � z).

Notation: Let A be a bounded (quasi) hyper hoop. Then for any x ∈ A, we
consider x′ = x→ 0.

Proposition 3.6. Let A be a bounded quasi hyper hoop. Then 1 ∈ 0′ and for any
x ∈ A, {x} ≤ x′′.

Proof. By (HHA2), 1 ∈ 0→ 0. Then 1 ∈ 0′. Since by (HHA12),

(x→ 0)→ (x→ 0) = x→ ((x→ 0)→ 0) = x→ x′′

and by (HHA2), 1 ∈ (x→ 0)→ (x→ 0). Then 1 ∈ x→ x′′ and so, {x} ≤ x′′.
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Proposition 3.7. Let A be a bounded hyper hoop. Then the following hold, for
any x, y ∈ A,
(i) x ≤ y, implies that y′ ≤ x′,
(ii) x′ ≤ x→ y,
(iii) x→ y ≤ y′ → x′.

Proof. (i) If x ≤ y, then by (HHA26), y → 0 ≤ x→ 0. Hence y′ ≤ x′ .
(ii) Since 0 ≤ y, by (HHA25), x→ 0 ≤ x→ y. Hence x′ ≤ x→ y.
(iii) By Proposition 3.6 , y ≤ y′′. Then by (HHA25) and (HHA12),

x→ y ≤ x→ y′′ = x→ ((y → 0)→ 0) = (y → 0)→ (x→ 0) = y′ → x′.

Theorem 3.8. Any (quasi) hyper hoop of order n, can be extend to a (quasi) hyper
hoop of order n+ 1, for any n ∈ N.

Proof. Let A be a (quasi) hyper hoop of order n ∈ N, e be an element such that
e /∈ A and A1 = A ∪ {e}. Then we define two hyperoperations �′ and→′ on A1

by:

a�′ b=


a� b if a, b ∈ A,

{a} if a ∈ A, b = e,

{b} if b ∈ A, a = e

a→′ b =


a→ b ∪ {e} if a, b ∈ A, 1 ∈ a→ b,

a→ b if a, b ∈ A, 1 /∈ a→ b,

{e} if b = e,

{b} if a = e

By some modification we can prove that (A1,�′, e) is a commutative semihy-
pergroup with e as the unit and satisfies the conditions (HHA2), (HHA3), (HHA4),
(HHA5), (HHA6), and (HHA7). Therefore, (A1,�′,→′, e) is a (quasi) hyper hoop
and e is the unit element of it.

Corollary 3.9. There exist at least one (quasi) hyper hoop of order n, for any
n ∈ N

Proof. By Theorem 3.8 and Example 3.3 (ii), the proof is clear.

Note: From now on, we let A be a hyper hoop, unless otherwise is stated.
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4 Some filters on hyper hoop-algebras
In this section we define the concepts of some filters on hyper hoops and we

get some properties.

Definition 4.1. Let F be a non-empty subset of A. Then F is called an upset of
A, if x ∈ F and x ≤ y imply y ∈ F , for all x, y ∈ A,

Definition 4.2. Let F be a non-empty subset of A. Then:
(i) F is called a weak filter of A, if F is an upset and for all x, y ∈ F , x�y∩F 6= ∅.
(ii) F is called a filter of A, if F is an upset and for all x, y ∈ F , x� y ⊆ F .

Note: Let F be a (weak) filter of A and x ∈ F . Since F is an upset and x ≤ 1,
we get 1 ∈ F .

Example 4.3. (i) In Example 3.3(iv), F = {b, 1} is a filter.
(ii) In Example 3.3(v), F = {b, 1} is a weak filter.

Example 4.4. It is clear that A is a (weak) filter of A. By (HHA20), {1} = 1� 1
and so 1� 1 ⊆ {1}. Then {1} is a (weak)filter of A.

Proposition 4.5. Any filter of A is a weak filter.

Proof. Let F be a filter of A. Then F is an upset and x� y ⊆ F , for all x, y ∈ F .
Hence (x� y) ∩ F 6= ∅, for all x, y ∈ F . Then F is a weak filter.

Note: Any weak filter is not a filter, in general. It can be verified by the
following Example.

Example 4.6. In Example 3.3(vi), F = {b, 1} is a weak filter, but it is not a filter.

Theorem 4.7. Let F be a non-empty subset of A. Then F is a weak filter of A if
and only if F is an upset and F � x� y , for all x, y ∈ F .

Proof. (⇒) Straightforward.
(⇐) Let F be an upset and F � x� y, for all x, y ∈ F . Hence there exist u ∈ F
and v ∈ x� y such that u ≤ v. Since F is an upset and u ∈ F , then v ∈ F and so
x� y ∩ F 6= ∅. Hence F is a weak filter of A.

Theorem 4.8. Let F be a filter of A. Then for all x, y, z ∈ A,
(i) if x→ y ⊆ F and x ∈ F , then y ∈ F ,
(ii) If x→ y ⊆ F and x� z ⊆ F , then y � z ⊆ F ,
(iii) If x, y ∈ F and x� y → z, then z ∈ F .
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Proof. (i) Let x ∈ F and x → y ⊆ F , for x, y ∈ A. Then x � (x → y) =⋃
u∈x→y x � u ⊆ F . On the other hand, since x → y � x → y, by (HHA11),

(x → y) � x � y. Therefore, there is v ∈ (x → y) � x such that v ≤ y. Since
v ∈ F , we get y ∈ F .

(ii) By (HHA16), x � z � x, z. Then there exists u ∈ x � z ⊆ F such that
u ≤ x, z. Since u ∈ F and F is a filter, we get x, z ∈ F . Now, since x ∈ F and
x→ y ⊆ F , by (i) y ∈ F . Finally, since y, z ∈ F and F is a filter, y � z ⊆ F .

(iii) Let x, y ∈ F . Since F is a filter, x � y ⊆ F and since x � y → z, by
(HHA10), x � y � z. Then there exists u ∈ x � y ⊆ F such that u ≤ z. Since
F is a filter and u ∈ F , we get z ∈ F .

Theorem 4.9. Let F be a non-empty subset of A. Then F is a filter of A if and
only if 1 ∈ F and F � x→ y and x ∈ F implies y ∈ F , for any x, y ∈ A.

Proof. (⇒) Let F be a filter, F � x → y and x ∈ F , for x, y ∈ A. Hence there
exist u ∈ F and v ∈ x → y such that u ≤ v. Since u ∈ F and F is an upset,
we get v ∈ F and since F is a filter, we get x � v ⊆ F . By v ∈ x → y we have
{v} ≤ x → y. Then by (HHA10), v � x � y and so there exists t ∈ v � x ⊆ F
such that t ≤ y. Since F is an upset, we get y ∈ F .
(⇐) Let x ≤ y and x ∈ F , for x, y ∈ A. Then 1 ∈ x → y and since 1 ∈ F ,
we get F � x → y. Then, by hypothesis y ∈ F and so F is an upset. Now, let
x, y ∈ F and u ∈ x � y. Then x � y � u and so by (HHA10), {y} ≤ x → u.
Since y ∈ F , we get F � x→ u and so by hypothesis, u ∈ F . Hence x� y ⊆ F
and so F is a filter of A.

Definition 4.10. Let S be a non-empty subset of A. If S is a hyper hoop with
respect to the hyperoperations � and → on A, we say that S is a hyper hoop-
subalgebra of A.

Theorem 4.11. Let S be a non-empty subset of A. Then S is a hyper hoop-
subalgebra of A iff x� y ⊆ S and x→ y ⊆ S, for all x, y ∈ S.

Proof. (⇒) The proof is clear.
(⇐) Let x ∈ S. By (HHA2), 1 ∈ x → x and by assumption, x → x ⊆ S.

Hence 1 ∈ S. It is easy to show that (S,�,→, 1) is a hyper hoop. Then S is a
hyper hoop-subalgebra of A.

Example 4.12. (i) In Example 3.3(iv), F = {b, 1} is a hyper hoop-subalgebra.
(ii) In Example 3.3(iii), F = {1} is a (weak)filter, but it is not a hyper hoop-
subalgebra.
(iii) In Example 3.3(vi), F = {a, 1} is a hyper hoop-subalgebra, but it is not a
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(weak)filter. Since a ≤ c and a ∈ F , but c /∈ F and so F is not an upset.

Theorem 4.13. If {Fi} is a finite family of filters of A, then ∩{Fi} is a filter of A.

Proof. The proof is easy.

Definition 4.14. Let D be a subset of A. The intersection of all (weak) filters of
A containing D is called the (weak) filter generated by D. The filter generated
by D denoted by [D) and the weak filter generated by D denoted by [D)w. It is
trivial to verify that [D) is the least filter containing D and [D)w is the least weak
filter containing D.

Theorem 4.15. If ∅ 6= D ⊆ A, then

[D)w ⊆ {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � ....� an � {x}}

Proof. Let

F = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � a2 � ......� an � {x}}

It is sufficient to show that F is a weak filter containing D. Let x ≤ y and x ∈ F ,
for x, y ∈ A . Then there exist a1, ..., an ∈ D, such that, a1 � ...... � an � {x}.
Since x ≤ y, by (HHA23), a1 � ...... � an � {y} and so y ∈ F . Hence F is an
upset. Now, let x, y ∈ F . Then there exist a1, ..., an, b1, ..., bm ∈ D, such that,
a1�......�an � {x} and b1�......�bm � {y}. Hence there exist u ∈ a1�.....�an
and v ∈ b1 � .....� bm, such that u ≤ x and v ≤ y. By (HHA30) u� v � x� y.
Then a1� ......� an� b1� ......� bm � x� y. Hence there exists s ∈ x� y such
that a1 � ......� an � b1 � ......� bm � {s} and so x� y ∩ F 6= ∅. Thus F is a
weak filter of A. For all d ∈ D we have {d} � {d}, and so d ∈ F . Therefore F
is a weak filter of A containing D.

Note: In the following Example we will show that the equation, [D)w = F is
not true, in general, where

F = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � ....� an � {x}}

Example 4.16. In Example 3.3(v), if we take D = {b} then it follows that F =
{1, b, c}, that is a weak filter containing D, but [D)w = {1, b}. Hence in this
Example [D)w 6= F .

Theorem 4.17. If ∅ 6= D ⊆ A, then

[D) = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � ....� an � {x}}
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Proof. Let

F = {x ∈ A|∃ a1, ..., an ∈ D, s.t. a1 � a2 � ......� an � {x}}

Let x ≤ y and x ∈ F , for x, y ∈ A. Then there exist a1, ..., an ∈ D, such that,

a1 � ......� an � {x}

Since x ≤ y, by (HHA24), a1 � ...... � an � {y} and so y ∈ F . Hence F is an
upset. Now, let x, y ∈ F . Then there exist a1, ..., an, b1, ..., bm ∈ D, such that,
a1 � ......� an � x and b1 � ......� bm � {y}. For all u ∈ x� y, x� y � {u}.
Then by(HHA10), {x} ≤ y → u. Since a1� ......� an � {x} and {x} ≤ y → u
by (HHA24), a1 � ......� an � y → u. Since b1 � ......� bm � y by (HHA26),
y → u ≤ (b1 � ......� bm)→ u. Hence

a1 � ......� an � y → u ≤ (b1 � ......� bm)→ u

and so by (HHA22), a1� ......� an � (b1� ......� bm)→ u. Then by (HHA11),
(a1 � ......� an)� (b1 � ......� bm)� {u} and so u ∈ F . Therefore x� y ⊆ F
and so F is a filter. Since d� d, for all d ∈ D, we have d ∈ F and so F is a filter
of A containing D. Let D ⊆ C and C be a filter of A. For all x ∈ F , there exist
a1, ..., an ∈ D, such that

a1 � ....� an � {x}

Then there exists v ∈ a1 � ....� an, such that v ≤ x. By a1, ..., an ∈ D ⊆ C and
C is a filter, it follows that a1 � .....� an ⊆ C and so v ∈ C. Since C is an upset
we have x ∈ C and so F ⊆ C. Therefore [D) = F .

Definition 4.18. Let A be bounded. Then D ⊆ A is said to have the finite inter-
section property if a1 � a2......� an ∩ {0} = ∅, for all a1, ...., an ∈ D.

Theorem 4.19. Let A be bounded and D ⊆ A. Then [D) is a proper filter of A if
and only if D has the finite intersection property.

Proof. Let [D) be a proper filter of A and D has not the finite intersection prop-
erty, by the contrary. Then there exist a1, ...., an ∈ D such that 0 ∈ a1 � a2......�
an. Hence a1 � a2...... � an � {0} and so by Theorem 4.17, 0 ∈ [D). Since
0 ≤ x, for all x ∈ A and [D) is a filter, we have x ∈ [D) and so [D) = A, which
is a contradiction. Hence D has the finite intersection property.
Conversely, let D has the finite intersection property and [D) is not a proper filter,
by the contrary. Then [D) = A and so 0 ∈ [D). Then by Theorem 4.17, there
exist a1, ...., an ∈ D such that a1�a2......�an � {0} and so 0 ∈ a1�a2......�an.
Then D has not the finite intersection property, which is a contradiction. Hence
[D) is a proper filter.
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Theorem 4.20. If F is a filter of A and a ∈ A, then

[F ∪ {a}) = {x|x ∈ A, ∃n ∈ N, s.t., an → x ∩ F 6= ∅}

Proof. Suppose that x ∈ [F ∪ {a}). By Theorem 4.17, there exist b1, ...., bm ∈ F
and n ∈ N such that

b1 � .....� bm � an � {x}

By (HHA11), we have b1 � ..... � bm � an → x. Then there exists u ∈ b1 �
.....� bm and v ∈ an → x such that u ≤ v. Since F is a filter and b1, ...., bm ∈ F ,
we get b1 � .....� bm ⊆ F and so u ∈ F . Now, since F is a filter, we get v ∈ F .
Hence an → x ∩ F 6= ∅.
Conversely, let there exists n ∈ N such that an → x∩F 6= ∅. If s ∈ an → x∩F ,
then 1 ∈ s → (an → x). Hence by (HHA4), 1 ∈ (s � an) → x. Therefore,
s� an � {x} and so by Theorem 4.17, x ∈ [F ∪ {a}).

5 Conclusion
In this paper, we applied the hyper structure theory to the hoop algebras and

introduced the notion of (quasi) hyper hoop algebra which is a generalization of
hoop-algebra. Then we studied some properties and filter theory of this structure.
Topological and categorical properties, quotient structures and relation with the
other hyperstructures can be studied for the future researches.
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[12] P. Hájek, Metamathematics of fuzzy logic, Trends in Logic-Studia Logica
Library, Dordrecht/Boston/London,(1998).

[13] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math-
ematiciens Scan- dinaves, Stockholm, (1934), 45-49.

81





 

Publisher: 

Accademia Piceno – Aprutina dei Velati in Teramo (A.P.A.V.) 

 

Periodicity: 

every six months 

 

Printed in 2016 in Pescara (Italy) 

 

 

Autorizzation n. 9/90 of 10/07/1990 released by Tribunale di Pescara 
ISSN: 1592-7415 (printed version) - COPYRIGHT © 2013 All rights reserved 

 

Autorizzation n. 16 of 17/12/2013 released by Tribunale di Pescara 
ISSN: 2282-8214 (online version) - COPYRIGHT © 2014 All rights reserved 

 

 

 

 

 

 

 

 

 
www.eiris.it – www.apav.it 



Ratio Mathematica, 30, 2016 

 

Contents 

 
Priyantha Wijayatunga  

A geometric view on Pearson's correlation coefficient and a 

generalization of it to non-linear dependencies 

 

 

 

3 

Martin Bureš and Filip Dohnal  

Verification of the mathematically computed impact of the relief 

gradient to vehicle speed 

 

 

 

23 

František Bubeník and Petr Mayer 

A recursive variant of Schwarz type domain decomposition methods 

 

 

 

35 

Fabrizio Maturo 

Dealing with randomness and vagueness in business and management 

sciences: the fuzzy-probabilistic approach as a tool for the study of 

statistical relationships between imprecise variables 

 

 

 

45 

Radovan Potůček 

The sum of the series of reciprocals of the quadratic polynomial 

with different negative integer roots 

 

 

 

59 

Rajabali Borzooei, Hamidreza Varasteh and Keivan Borna 

On Hyper Hoop-algebras 

 

 

 

 

67 

Published by Accademia Piceno - Aprutina dei Velati in Teramo 

(A.P.A.V.) 


