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Abstract

The purpose of this paper is the study of rough hyperlattice. In this
regards we introduce rough sublattice and rough ideals of lattices. We
will proceed by obtaining lower and upper approximations in these
lattices.

Keywords: rough set, lower approximation, upper approxima-
tion, rough sublattice, rough ideal

1 Introduction

Never in the history of mathematics has a mathematical theory been
the object of such vociferous vituperation as lattice theory (for more details
see[3, 13]). Lattices are partially ordered sets in which least upper bounds
and greatest lower bounds of any two elements exist. A lattice is a set on
which two operations are defined, called join and meet and denoted by ∨
and ∧, which satisfy the idempotent, commutative and associative laws, as
well as the absorption laws:

a ∨ (b ∧ a) = a,
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a ∧ (b ∨ a) = a.
Lattices are better behaved than partially ordered sets lacking upper or

lower bounds.
The concept of rough set was originally proposed by Pawlak [21, 22] as a

formal tool for modeling and processing incomplete information in informa-
tion systems. Since then the subject has been investigated in many papers
(see [20, 23, 24]). The theory of rough set is an extension of set theory, in
which a subset of a universe is described by a pair of ordinary sets called the
lower and upper approximations. A key notion in Pawlak rough set model is
an equivalence relation. The equivalence classes are the building blocks for
the construction of the lower and upper approximations. The lower approx-
imation of a given set is the union of all the equivalence classes which are
subsets of the set, and the upper approximation is the union of all the equiva-
lence classes which have a non-empty intersection with the set. Some authors,
for example, Bonikowaski [5], Iwinski [15], and Pomykala and Pomykala [24]
studied algebraic properties of rough sets. The lattice theoretical approach
has been suggested by Iwinski [15]. In this paper we concentrates on the
relationship between rough sets and lattice theory. We introduce the notion
of rough sublattices (resp. ideals) of lattices, and investigate some properties
of lower and upper approximations in lattices.

2 Preliminaries

Suppose that U is a non-empty set. A partition or classification of
U is a family P of non-empty subsets of U such that each element of U is
contained in exactly one element of P . Recall that an equivalence relation
on a set U is a reflexive, symmetric, and transitive binary relation on U .
Each partition P induces an equivalence relation θ on U by setting:

xθy ⇔ x and y are in the same class of P .
Conversely, each equivalence relation θ on U induces a partition P of U

whose classes have the form [x]θ = {y ∈ U | xθy}.
Given a non-empty universe U , by P (U) we will denote the power set on

U. If θ is an equivalence relation on U then for every x ∈ U , [x]θ denotes
the equivalence class of θ determined by x. For any X ⊆ U , we write Xc to
denote the complementation of X in U , that is the set U \X.

Definition 2.1. [8] A pair(U, θ); where U 6= ∅ and θ is an equivalence
relation on U , is called an approximation space.

Definition 2.2. [8] For an approximation space (U, θ), by a rough
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approximation in (U, θ) we mean a mapping A : P (U) → P (U) × P (U)
defined by for every X ∈ P (U), A(X) = (A(X),A(X)) where A(X) = {x ∈
X | [x]θ ⊆ X}, A(x) = {x ∈ X | [x]θ ∩ X 6= ∅}. A(X) is called a lower
rough approximation of X in (U, θ), where as A(X) is called upper rough
approximation of X in (U, θ).

Definition 2.3. [8] Given an approximation space (U, θ) a pair (A,B) ∈
P (U) × P (U) is called a rough set in (U, θ) iff (A,B) = A(X) for some
X ∈ P (U).

For the sake of illustration, let (U, θ) is an approximation space, where:

U = {x1, x2, x3, x4, x5, x6, x7, x8}, and an equivalence relation θ with the
following equivalence classes:

E1 = {x1, x4, x8},
E2 = {x2, x5, x7},
E3 = {x3},
E4 = {x6},
Let X = {x3, x5}, then A(X) = {x3} and A(X) = {x2, x3, x5, x7} and so

({x3}, {x2, x3, x5, x7}) = A(X) is a rough set.

The reader will find in [18,21-25] a deep study of rough set theory.

Definition 2.4. [7] A subset Xof U is called definable if A(X) = A(X).
If X ⊆ U given by a predicate P and x ∈ U , then:

1. x ∈ A(X) means that x certainly has property P ,

2. x ∈ A(X) means that x possibly has property P ,

3. x ∈ U \ A(X) means that x definitely does not have property P .

When A(A) v A(B), we say that A(A) is a rough subset of A(B). Thus
in the case of rough sets A(A) and A(B), A(A) v A(B) if and only if
A(A) ⊆ A(B) and A(A) ⊆ A(B). This property of rough inclusion has
all the properties of set inclusion. The rough complement of A(A) denoted
by Ac(A) is defined by: Ac(A) = (U \ A(A), U \ A(A)). Also, we can define
A(A) \ A(B) as follows:

A(A) \ A(B) = A(A) u Ac(B) = (A(A) \ A(B),A(A) \ A(B)).

Let L be a lattice and S ⊆ L, If S is a lattice, then S is called a sublattice
of L. A sublattice I is called an ideal of L, if a ∈ L and x ∈ I imply a∧x ∈ L
(see[2]).

Let ρ be an equivalence relation on L and x, y, z ∈ L.
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(1) ρ is called a congruence relation if xρy implies (x ∨ z)ρ(y ∨ z) and
(x ∧ z)ρ(y ∧ z).

(2) ρ is called a complete congruence relation if [x]ρ∨ [y]ρ = [x∨y]ρ, and
[x]ρ ∧ [y]ρ = [x ∧ y]ρ.

If ρ is a congruence relation on L, then it is easy to verify that [x]ρ∨[y]ρ ⊆
[x ∨ y]ρ, [x]ρ ∧ [y]ρ ⊆ [x ∧ y]ρ.

3 Rough ideals of lattices

Throughout this paper L denotes a lattice. Let ρ be an equivalence rela-
tion on L and X be a non-empty subset of L. When U = L and θ is the above
equivalence relation, then we use the pair (L, ρ) instead of the approximation
space (U, θ). Also, in this case we use the symbols Aρ(X) and Aρ(X) instead

of A(X) and A(X).

Proposition 3.1. For every approximation space (L, ρ), where ρ is an
equivalence relation, and every subsets A, B ⊆ L, we have:

(1) Aρ(A) ⊆ A ⊆ Aρ(A);

(2) Aρ(∅) = ∅ = Aρ(∅);
(3) Aρ(L) = L = Aρ(L);

(4) If A ⊆ B, then Aρ(A) ⊆ Aρ(B), and Aρ(A) ⊆ Aρ(B);
(5) Aρ(Aρ(A)) = Aρ(A);

(6) Aρ(Aρ(A)) = Aρ(A);
(7) Aρ(Aρ(A)) = Aρ(A);

(8) Aρ(Aρ(A)) = Aρ(A);

(9) Aρ(A) = (Aρ(A
c))c;

(10)Aρ(A) = (Aρ(A
c))c;

(11)Aρ(A ∩B) = Aρ(A) ∩ Aρ(B);

(12)Aρ(A ∩B) ⊆ Aρ(A) ∩ Aρ(B) ;
(13)Aρ(A ∪B) ⊇ Aρ(A) ∪ Aρ(B);

(14)Aρ(A ∪B) = Aρ(A) ∪ Aρ(B);
(15)Aρ([x]ρ) = Aρ([x]ρ) for all x ∈ L;

Proof. (15) Aρ([x]ρ) = {y ∈ L | [y]ρ ⊆ [x]ρ} = [x]ρ, and Aρ([x]ρ) = {y ∈
L | [y]ρ ∩ [x]ρ 6= ∅} = [x]ρ. Hence Aρ([x]ρ) = Aρ([x]ρ).

The other parts of the proof is similar to the [17, Theorem 2.1] and [7,
Proposition 4.1]. 2
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The following example shows that the converse of (12) and (13) in Propo-
sition 3.1 are not true.

Example 3.2. Let L = {1, 2, ..., 8}, Then (L,∧,∨) is a lattice, where
∀a, b ∈ L, a ∧ b = min{a, b}, a ∨ b = max{a, b}. Let ρ be an equivalence
relation on L with the following equivalence classes:

[1]ρ = {1, 4, 8},
[2]ρ = {2, 5, 7},
[3]ρ = {3},
[6]ρ = {6},
and A = {3, 5, 7}, B = {2, 6}. Then:

Aρ(A) = {3},
Aρ(B) = {6},
Aρ(A ∪B) = {2, 3, 5, 6, 7},
Aρ(A) = {2, 3, 5, 7},
Aρ(B) = {2, 5, 6, 7},
Aρ(A ∩B) = ∅,
and so Aρ(A) ∩ Aρ(B) * Aρ(A ∩B), Aρ(A ∪B) * Aρ(A) ∪ Aρ(B).

Corollary 3.3. For every approximation space (L, ρ),

(i) For every A ⊆ L, Aρ(A) and Aρ(A) are definable sets,

(ii) For every x ∈ L, [x]ρ is definable set.

Proof. It is immediately by Proposition 3.1 (parts (5), (6), (7), (8) and
(15)). 2

If A and B are non-empty subsets of L, let A∧B and A∨B denotes the
following sets:

A ∧B = {a ∧ b | a ∈ A, b ∈ B}, A ∨B = {a ∨ b | a ∈ A, b ∈ B}.

Proposition 3.4. Let ρ be a complete congruence relation on L, and A,
B non-empty subsets of L, then Aρ(A) ∧ Aρ(B) = Aρ(A ∧B).

Proof. Suppose z be any element of Aρ(A) ∧ Aρ(B), then z = a ∧ b
for some a ∈ Aρ(A), b ∈ Aρ(B), hence [a]ρ ∩ A 6= ∅ and [b]ρ ∩ B 6= ∅ and
so there exist x ∈ [a]ρ ∩ A and y ∈ [b]ρ ∩ B. Therefore x ∧ y ∈ A ∧ B
and x ∧ y ∈ [a]ρ ∧ [b]ρ = [a ∧ b]ρ hence [a ∧ b]ρ ∩ (A ∧ B) 6= ∅ and so
Aρ(A) ∧ Aρ(B) ⊆ Aρ(A ∧B).

Conversely, let x ∈ Aρ(A ∧B) then [x]ρ ∩ (A ∧B) 6= ∅ hence there exists
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y ∈ [x]ρ and y ∈ A ∧ B and so y = a ∧ b for some a ∈ A and b ∈ B. Now
we have x ∈ [y]ρ = [a ∧ b]ρ = [a]ρ ∧ [b]ρ. Then there exist x′ ∈ [a]ρ and
y′ ∈ [b]ρ such that x = x′ ∧ y′. Since a ∈ [x′]ρ ∩ A and b ∈ [y′]ρ ∩ B, hence
x′ ∈ Aρ(A) and y′ ∈ Aρ(B), which yields that x = x′ ∧ y′ ∈ Aρ(A) ∧ Aρ(B)
and so Aρ(A ∧B) ⊆ Aρ(A) ∧ Aρ(B). 2

Proposition 3.5. Let ρ be a complete congruence relation on L, and A,
B non-empty subsets of L, then Aρ(A) ∨ Aρ(B) = Aρ(A ∨B).

Proof. The proof is similar to the proof of Proposition 3.4, by consider-
ing the suitable modification by using the definition of A ∨B. 2

Proposition 3.6. Let ρ be a complete congruence relation on L, and A,
B non-empty subsets of L, then Aρ(A) ∧ Aρ(B) ⊆ Aρ(A ∧B).

Proof. Suppose x be any element of Aρ(A) ∧ Aρ(B) then x = a ∧ b
for some a ∈ Aρ(A) and b ∈ Aρ(B). Hence [a]ρ ⊆ A and [b]ρ ⊆ B. Since
[a∧b]ρ = [a]ρ∧[b]ρ ⊆ A∧B, we get a∧b ∈ Aρ(A∧B) and so x ∈ Aρ(A∧B). 2

The following example shows that the converse of Proposition 3.6 is not
true.

Example 3.7. Let L = {0, 1, 2, ..., 11}, Then (L,∧,∨) is a lattice, where
∀a, b ∈ L, a ∧ b = min{a, b}, a ∨ b = max{a, b}. Let ρ be a complete
congruence relation on L with the following equivalence classes:

[0]ρ = {0, 1, 2},
[3]ρ = {3, 4, 5},
[6]ρ = {6, 7, 8},
[9]ρ = {9, 10, 11},
and A = {1, 3, 4, 5}, B = {0, 1, 2, 6, 8}. Then:

Aρ(A) = {3, 4, 5},
Aρ(B) = {0, 1, 2},
A ∧B = {0, 1, 2, 3, 4, 5}
Aρ(A ∧B) = {0, 1, 2, 3, 4, 5},
Aρ(A) ∧ Aρ(B) = {0, 1, 2}
and so Aρ(A ∧B) * Aρ(A) ∧ Aρ(B).

Proposition 3.8. Let ρ be a complete congruence relation on L, and A,
B non-empty subsets of L, then Aρ(A) ∨ Aρ(B) ⊆ Aρ(A ∨B).

8
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Proof. The proof is similar to the proof of Proposition 3.6, by consider-
ing the suitable modification by using the definition of A ∨B. 2

The following example shows that Aρ(A ∨B) ⊆ Aρ(A) ∨Aρ(B) does not
hold in general.

Example 3.9. Let L = {0, 1, 2, ..., 8}, Then (L,∧,∨) is a lattice, where
∀a, b ∈ L, a ∧ b = min{a, b}, a ∨ b = max{a, b}. Let ρ be a complete
congruence relation on L with the following equivalence classes:

[0]ρ = {0, 1, 2},
[3]ρ = {3, 4},
[5]ρ = {5, 6, 7, 8},
and A = {3, 4, 5, 7}, B = {0, 1, 2, 3, 6, 8}. Then:

Aρ(A) = {3, 4},
Aρ(B) = {0, 1, 2},
A ∨B = {3, 4, 5, 6, 7, 8},
Aρ(A ∨B) = {3, 4, 5, 6, 7, 8},
Aρ(A) ∨ Aρ(B) = {3, 4},
and so Aρ(A ∨B) * Aρ(A) ∨ Aρ(B)

Lemma 3.10. Let ρ1 and ρ2 be two complete congruence relations on L
such that ρ1 ⊆ ρ2 and let A be a non-empty subset of L, then:

(i) Aρ2
(A) ⊆ Aρ1

(A),

(ii) Aρ1(A) ⊆ Aρ2(A).

Proof. It is straightforward. 2

The following Corollary follows from Lemma 3.10.

Corollary 3.11. Let ρ1 and ρ2 be two complete congruence relations on
L and A a non-empty subset of L, then:

(i) Aρ1
(A) ∩ Aρ2

(A) ⊆ A(ρ1∩ρ2)(A),

(ii) A(ρ1∩ρ2)(A) ⊆ Aρ1(A) ∩ Aρ2(A).

Proposition 3.12. Let ρ be a congruence relation on L, and J be an
ideal of L, then Aρ(J) is an ideal of L.

Proof. Suppose a, b ∈ Aρ(J) and r ∈ L, then [a]ρ∩J 6= ∅ and [b]ρ∩J 6= ∅.
So there exist x ∈ [a]ρ ∩ J and y ∈ [a]ρ ∩ J . Since J is an ideal of L, we have
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x∨y ∈ J and x∨y ∈ [a]ρ∨ [b]ρ ⊆ [a∨b]ρ. Hence [a∨b]ρ∩J 6= ∅ which implies
a ∨ b ∈ Aρ(J). Also, we have r ∧ x ∈ J and r ∧ x ∈ [r]ρ ∧ [a]ρ ⊆ [r ∧ a]ρ. So
[r∧a]ρ∩J 6= ∅ which implies r∧a ∈ Aρ(J). Therefore Aρ(J) is an ideal of L. 2

Similarly, if ρ is a congruence relation on L and J is a sublattice of L,
then Aρ(J) is a sublattice of L.

Proposition 3.13. Let ρ be a complete congruence relation on L, and
J be an ideal of L, then Aρ(J) is an ideal of L.

Proof. Suppose a, b ∈ Aρ(J) and r ∈ L, then [a]ρ ⊆ J and [b]ρ ⊆ J . So
[a ∨ b]ρ = [a]ρ ∨ [b]ρ ⊆ J, and [r ∧ a]ρ = [a]ρ ∧ [b]ρ ⊆ J . Hence a ∨ b ∈ Aρ(J)
and r ∧ a ∈ Aρ(J). 2

Similarly, if ρ is a complete congruence relation on L and J is a sublattice
of L, then Aρ(J) is a sublattice of L.

Definition 3.14. Let ρ be a congruence relation on L and Aρ(A) =
(Aρ(A),Aρ(A)) a rough set in the approximation space (L, ρ). If Aρ(A) and

Aρ(A) are ideals (resp. sublattice) of L, then we call Aρ(A) a rough ideal
(resp. sublattice). Note that a rough sublattice also is called a rough lattice.

Corollary 3.15. (i) Let ρ, be a congruence relation on L, and I an ideal
of L then Aρ(I) is a rough ideals.

(ii) Let ρ be a complete congruence relation on L and J a sublattice of
L, then Aρ(J) is a rough lattice.

Proof. It is obtained by 3.12 and 3.13. 2

Let L and L′ be two lattices, a map f : L→ L′ is said to be homomor−
phism or (lattice homomorphism) if for all a, b ∈ L, f(a ∧ b) = f(a) ∧ f(b),
and f(a ∨ b) = f(a) ∨ f(b).

Now, let L and L′ be two lattices and f : L → L′ a homomorphism. It
is well known, θ = {(a, b) ∈ L × L | f(a) = f(b)} ⊆ L × L is a congruence
relation on L. Because if aθb then f(a) = f(b) and for all z ∈ L, we have
f(a ∧ z) = f(a) ∧ f(z) = f(b) ∧ f(z) = f(b ∧ z). Therefor (a ∧ z) θ (b ∧ z),
and similarly (a ∨ z) θ (b ∨ z).

Theorem 3.16. Let L and L′ be two lattices and f : L → L′ a homo-
morphism. If A is a non-empty subset of L, then f(Aθ(A)) = f(A).

10
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Proof. Since A ⊆ Aθ(A) it follows that f(A) ⊆ f(Aθ(A)).

Conversely, let y ∈ f(Aθ(A)). Then there exists an element x ∈ Aθ(A),
such that f(x) = y, so we have [x]θ ∩ A 6= ∅. Thus there exists an element
a ∈ [x]θ ∩A. Then a ∈ [x]θ, hence xθa, and so f(x) = f(a) ∈ f(A), therefore
f(Aθ(A)) ⊆ f(A). 2

Let f : L→ L′ be a homomorphism and A a subset of L, Since Aθ(A) ⊆ A
it follows that f(Aθ(A)) ⊆ f(A). But the following example shows that, in
general, f(Aθ(A)) 6= f(A).

Example 3.17. Let (L,∧,∨) and (L′,∧,∨) be two lattices where L =
{1, 2, 3, 4}; and L′ = {5, 6, 7}; and for all s, t in L or L′, s∧ t= min{s, t} and
s ∨ t = max{s, t}. The map f : L→ L′ given by

f(4) = f(3)= 7, f(2) = 6, f(1) = 5,

is a homomorphism. We have θ = {3, 4}. Suppose A = {1, 2}, then
f(A) = {5, 6}, Aθ(A) = ∅ and f(Aθ(A)) = ∅, and so f(Aθ(A)) 6= f(A).

The lower and upper approximations can be presented in an equivalent
form as follows:

Let L be a lattice, ρ a congruence relation on L, and A a non-empty
subset of L. Then we define ∨ and ∧ on L/ρ = {[x]ρ | x ∈ L}, by

[x]ρ∨[y]ρ = [x ∨ y]ρ, [x]ρ∧[y]ρ = [x ∧ y]ρ.

This relation is well-defined, since if [x1]ρ = [x2]ρ and [y1]ρ = [y2]ρ, then
x1ρx2 and y1ρy2. Since ρ is a congruence relation we have (x1 ∨ y1)ρ(x2 ∨ y1)
and (x2 ∨ y1)ρ(x2 ∨ y2). Then (x1 ∨ y1)ρ(x2 ∨ y2), so [x1 ∨ y1]ρ = [x2 ∨ y2]ρ.
Therefore [x1]ρ∨[y1]ρ = [x2]ρ∨[y2]ρ.

It is easy to see that (L/ρ,∨,∧), is a lattice. Also if A 6= ∅, and A ⊆ L put

A
ρ
(A) = {[x]ρ ∈ L/ρ | [x]ρ ⊆ A} and Aρ(A) = {[x]ρ ∈ L/ρ | [x]ρ ∩ A 6= ∅}.

Proposition 3.18. Let ρ be a congruence relation on L and J be an

ideal of L, then Aρ(J) is an ideal of L/ρ.

Proof. Assume that [a]ρ, [b]ρ ∈ Aρ(J) and [r]ρ ∈ L/ρ. Then [a]ρ ∩ J 6= ∅
and [b]ρ∩J 6= ∅, so there exist x ∈ [a]ρ∩J and y ∈ [b]ρ∩J . Since J is an ideal
of L, we have x∨y ∈ J and r∧x ∈ J . Also, we have x∨y ∈ [a]ρ∨[b]ρ ⊆ [a∨b]ρ,
and r∧x ∈ [r]ρ∧ [a]ρ ⊆ [r∧a]ρ. Therefore [a∨b]ρ∩J 6= ∅ and [r∧a]ρ∩J 6= ∅,
which imply [a]ρ ∨ [b]ρ ∈ Aρ(J) and [r]ρ ∧ [a]ρ ∈ Aρ(J). Therefore Aρ(J) is
an ideal of L/ρ. 2

11
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Proposition 3.19. Let ρ be a complete congruence relation on L and J
be an ideal of L, then A

ρ
(J) is an ideal of L/ρ.

Proof. Assume that [a]ρ, [b]ρ ∈ A
ρ
(J) and [r]ρ ∈ L/ρ. Then [a]ρ ⊆ J

and [b]ρ ⊆ J . Since J is an ideal of L, we have a ∨ b ∈ J and r ∧ a ∈ J
Therefore [a]ρ ∨ [b]ρ = [a ∨ b]ρ ⊆ J ∨ J = J , and [r]ρ ∧ [a]ρ = [r ∧ a]ρ ⊆ J ,
which imply [a]ρ ∨ [b]ρ ∈ A

ρ
(J) and [r]ρ ∧ [a]ρ ∈ A

ρ
(J). Therefore A

ρ
(J) is

an ideal of L/ρ. 2

Proposition 3.20. (i) Let ρ be a congruence relation on L and J a

sublattice of L, then Aρ(J) is a sublattice of L/ρ.

(ii) Let ρ be a complete congruence relation on L and J a sublattice of
L, then A

ρ
(J) is a sublattice of L/ρ.

Proof. Similar to the proof of propositions 3.13, 3.18 and 3.19. 2
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Abstract  

The paper is dealing with risk assessment affecting the 

hazardous substances shipping by rail; there are identified and assessed 

risks during the work process. The point method is applied to evaluate 

how serious risks are. In conclusion, there are suggested particular 

measures to reduce or eliminate the risks. The main priority of the 

system should consist in providing a safe workplace, or minimizing and 

eliminating undesirable factors. 

Keywords: transport, accident, emergency, hazardous substance, railway, 

risks assessment 

 

 

1 Introduction  
 

Safety belongs to basic prerequisites in the transport process; therefore, 

the emergence of rail accidents as well as emergencies cannot be passed over in 

the transport process particularly in cases of shipping hazardous substances. 

Every responsible person involved in transporting hazardous substances is 

obliged to comply with the relevant rules and regulations so that risks could be 

prevented as much as possible.  

There are a number of methods able to anticipate and mitigate the 

impacts of accidents. All of these methods follow their purpose and are limited 

by restrictions. This paper is presenting the point method application. The risk 

assessment is a highly complex process considering various criteria. Having 

mailto:filarskaolga@yahoo.com
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identified threatening sources of risks and factors, assessment and subsequent 

managing risk can follow.  

 

 

2  Current situation 

 

Occurrence and consequences of emergencies and accidents is a worldwide 

problem. An accident is such an activity of transport participants occurring in case of 

conflict with legal standards and regulations.   

There is an incorrect movement of means of transport, interaction with one 

another or collision with other traffic participants with consequences resulting in 

damage, destruction or deterioration of means, vehicles, communications and further 

damage. This fact is accompanied by damage to health or fatalities caused to 

participants of accidents. [1] 

Thorough cooperation of stakeholders as well as institutions can support 

significantly the smooth railway operation. Therefore, it becomes necessary to 

evaluate the situation and take measures while considering both the complex and 

partial situation solution processes.     

The available statistical data characterized the situations as follows: in the 

Czech Republic, a total of 1,100 accidents with 1,083 fatalities happened on the 

railways within the period 2006-2014. 

 

 

 

 

 

 

 

 

 

Table 1 Number of rail accidents in the Czech Republic and number of              

relevant casualties [2] 

 

 

 

 

 

 

 

 

Year Number of accidents Number of casualties 
2006 233 141 

2007 115 126 

2008 133 183 

2009 113 118 

2010 125 155 

2011 99 103 

2012 97 92 

2013 91 76 

2014 104 89 
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Graph 1 Number of rail accidents in the Czech Republic [2] 

 

 

 

 

 

 

 

 

 

 

 

Graf 2 Number of relevant casualties in the Czech Republic [2] 

 

Although the shipment by rail seems comparatively safe, it is not entirely 

without risk. The accidents occurrence is affected by aspects such as human 

factor, technical condition of the train, technical condition of railway 

superstructure natural conditions as well as the transported goods. The risk and 

affects are much higher in case of shipping hazardous substances. 
 

2.1 Risk assessment 
 

Nowadays, there are high requirements for performance and work effort 

of employees; they dominate the threat resulting in working environment safety. 

Employers often do not realize that safe workplace can improve the quality of 

the entire work process.   

Considering all the factors affecting the safe working environment is the 

basis for risks assessment in the work process.  

Risk analysis is a method for identifying and assessing factors, which 

may threaten individual activities and objectives of the organization. We can use 

it for the risks identification, to which the enterprise is exposed to in terms of 

external and internal perspectives. It is based on identification of risks factors, 

developing scenarios, assessing the likelihood and consequences, and, finally, 
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financial costs, in case that the emergency occurs. It is the basis for risk 

management and prevention of crisis situations in the enterprise. [2] 

The point method, extended risk definition, was selected to assess risk in 

our case. The point method is classified as one of most frequently used methods 

for risks assessment. The level of risk is expressed by combining the value of 

the likelihood of risks, possible consequence and the effect of the occupational 

safety and health (OSH); having assessed, it is assigned to the relevant group of 

final risk. This method is focused on the protecting human life.  

 

R (risk) = P (probability) x D (consequence) x V (effect of OSH level), [3] 

 

P – probability establishes the option estimation that the undesirable event 

occurs. It is expressed by assigning specific numbers 1 - 5 (Table 2), 

D – consequence expresses the seriousness of the consequence of the 

emergency occurrence; it is defined by five stages with assigned values from 1 

to 5 (Table 3), 

V – OSH level impact: this parameter comprises consideration of 

management level, the time of action period of threats, staff qualification, work 

ethic, the level of prevention, condition and age of technical equipment, 

maintenance level, the effect of work environment, workplace detachability, 

etc. (Table 4). 
 

Point value Verbal expression 

1 Improbable 

2 Random 

3 Probable 

4 Highly probable 

5 Permanent 

Table 2 Probability estimation [4] 

  

Table 3 Consequence estimation [4] 

 

 

 

 

 

Point value Verbal expression 

1 
Negligible effect on probability and injury 

consequences 

2 Little effect on  probability and injury consequences 

3 Considerable effect 

4 Significant, big effect 

5 More significant effects 
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Table 4 OSH impact estimation [4] 

 

Risk – final indicator, which is the product of all three parameters of the 

risk value. The lowest value can reach 1 and the highest 125. According to point 

range, the risk is classified into five categories. (Table 4). 

 

Table 5 Final risk range [4] 

 

 

 

 

Point value Verbal expression 
1 Damage to health and work activity 

2 Injury followed by sick leave 

3 More serious injury resulting in hospitalization 

4 
Severe  occupational injury with permanent 

consequences 

5 Fatal occupational injury 

Risk Risk category Point range Safety assessment 

Safety 

measures 

requirement 

Negligibl

e 
I 1-4 Acceptable safety 

Taking 

measures not 

required 

Moderate II 5-10 
Acceptable risk at 

increased attention 

System is 

classified as 

safe; 

improvement 

can be achieved, 

redress can be 

planned 

Critical III 
11-50 

 

Risk cannot be 

accepted without 

taking protective 

measures 

Safety measures 

should be taken 

Undesira

ble 
IV 51-100 

Inadequate safety, 

high possibility of 

injuries 

Immediate 

corrective 

measures or 

short-term 

measures have 

to be taken 

Unaccept

able 
V 100-125 

Dangerous system, 

permanent threat of 

injury 

Immediate 

cessation of 

activity, 

exclusion from 

operation 
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 2  Point method application while transporting 

hazardous substances by rail 

 

The carriage of hazardous substances by rail accounts for a significant 

share of total rail freight. Emergencies as well as accidents occur at shipping 

process resulting from hazardous substances characteristics. Number and scope 

of rail accidents is affected by many factors, which can be called causes resulting 

in consequences of various extents.   

Each hazardous substance has its characteristics, according to which the 

material should be packed, loaded and stowed, shipped via adequate route and 

unloaded. The employees are frequently a significant element at giving rise to an 

accident: it is caused by activities, either intentional non-compliance with 

regulations and rules or by ignorance. These accidents affect the smooth flow of 

work process and shipping hazardous substances and threaten the very persons 

involved as well as people around. They may also affect significantly the 

property of residents within the accident as well as the environment (soil and 

water contamination, air toxic pollution). Therefore, all the time it is necessary to 

inspect and train the staff being focused on preventing accidents. The following 

table highlights the possible threats, which might arise during the rail-transport 

work process.   
 

 

Number 
Responsible 

action 
Profession 

Possible threat due to non-compliance 

with regulations 

1. 
Goods 

loading 
loader 

- goods loading, which may react together, 

omitting the tank failure (rupture), failure to 

comply with test date, improper packaging 

(certified package of I, II, III group) and 

 goods labelling, damage to goods, 

incorrectly completed waybill, 

inappropriate use of wagon for the 

particular goods 

 

2. 
Tank 

labelling 
shipper 

- assigning wrong UN code, excessive 

number of pieces, overload, assigning 

improper parameters to a particular 

category of hazardous substances, different 

data in waybill in terms of labelling 

tanks/wagons or particular content 

 

3. 
Tank 

cleaning 
tank cleaner 

-  failure to comply with the rules on safety 

equipment, sparking at a soiled tank -   

threat to health state of an employee 

(fatality) 
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4. 
Train 

dispatch 

conductor 

and chief 

guard 

- faulty inspection of the train formation  

and brakes, improper connecting and 

disconnecting rail vehicles 

 

5. 

Maintenance 

of train-set 

and tanks 

train 

maintenance 

worker 

- tank leaks, unclosed dome lid,  cracks, 

bulging, violent damage, improper securing 

the bottom valve, missing protective caps, 

blind fastening screws (leakage of 

hazardous substance, fire, explosion) 

 

6. 
Track 

maintenance 

track 

engineer 

- neglected maintenance of tracks, sliding 

rails, not removing snow, icing, vegetation, 

outdated track (derailment) 

 

7. 

Security 

devices 

inspection 

Railway 

transport 

worker-

specialist 

(shunter, 

train 

dispatcher, 

switchman, 

switch 

supervisor,  

signalman, 

announcer, 

level-

crossing 

operator) 

- improper position of sliding rail/derailer, 

forgotten stop (derailment), faulty 

signalling (collision with a car, person) 

8. 
Shipping 

process 

engine 

driver 

- demanding route (steep descent, sharp 

bends), collisions with objects, cars, people, 

gases leakage into the environment 

 

9. 
Loading 

inspection 

security 

advisor 

- improper purchase of vehicles,  faulty 

testing of means of transport, inadequately 

trained staff 

 

 

Table 6 Application of point method for expressing threat and risk identification 
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Table 7 Results of point method 

 

4 Proposal of measures to reduce risks 

 
Risks presented in table 6, to a greater or lesser extent, affect the 

occurrence of accidents and emergencies. Knowledge of possible threats can 

result in taking measures, which might encourage risk reduction or elimination.   

Rail transport brings risks of different levels. Some risks are determined 

by illegal action of a third party (terroristic attack, criminality); therefore, these 

threats cannot be controlled properly.  

List of threats resulting from the assessment of risks in terms of 

transporting hazardous substances by rail: 

- rigorous assessment of the particular goods characteristics and safe 

loading,  

- modernization and inspection of used wagons and security devices, 

- improvement and checking used packaging/containers, 

- inspection of proper filling and pumping tanks, 

- thorough inspection of labelling and marking wagons, 

- data checking in a waybill and wagon labelling/marking,  

- observing number of loaded units, not overloading wagons, 

- applying adequate protective equipment and compliance with 

regulations at tank cleaning,  

Number 
Risk value 

P x D x V 
Risk category 

1. 
2 x 2 x 3 

12 
III 

2. 
3 x 3 x 2 

18 
III 

3. 
2 x 4 x 5 

40 
III 

4. 
3 x 3 x 2 

18 
III 

5. 
4 x 5 x 4 

80 
IV 

6. 
2 x 3 x 2 

12 
III 

7. 
2 x 3 x 4 

24 
III 

8. 
2 x 3 x 3 

12 
III 

9. 
2 x 2 x 1 

4 
I 
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- regular and complex inspection of the technical condition of the train, 

 tanks and brakes,  

- observing time-period checks, 

- rigorous track inspection, 

- tracks modernization,  

- regular removing obstacles from the railway track (vegetation, snow, 

 icing), 

- weather forecasting and thorough evaluation of transport options,  

- assessing and selecting route that is appropriate for shipping, 

- goods inspection while transported, 

- timely reporting in case of a terrorist attack or other unlawful entry of  

a third party,   

- assessment and investigation of accidents and their causes so that  

recurrence of accidents due to same causes could be avoided,  

- proper planning of work process, 

- responsible performing work by employees,  

- creating friendly work environment by superiors,  
regular training: acquainting employees with risks, which might affect their work, 

work process knowledgeability, knowledge and compliance with relevant legislation, 

compliance with OSH, knowledge to provide first aid help. 

5 Conclusions 

Nowadays, risk identification belongs to a significant and inseparable 

prevention component leading to higher quality and safer working environment. 

The point method application does not have to provide objective assessment, 

and final risk determination does not result in accurate values. However, its 

benefit consists in identification of risks, which threaten the smooth transport by 

rail. Risks assessment results are highly significant for taking suggested 

measures encouraging occupational health. 
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Abstract

In this paper, we investigate some results on hoop algebras and hyper
hoop-algebras. We construct a hoop and a hyper hoop on any countable set.
Then using the notion of the fundamental relation we define the fundamental
hoop and we show that any hoop is a fundamental hoop and then we con-
struct a fundamental hoop on any non-empty countable set.

Keywords: hoop algebras, hyper hoop algebras, (strong) regular rela-
tion,fundamental relations.

2000 AMS subject classifications: 20N20, 14L17, 97H50, 03G25,06F35.

1 Introduction
Hoop-algebras are naturally ordered commutative residuated integral monoids

were originally introduced by Bosbach in [7] under the name of complementary
semigroups. It was proved that a hoop is a meet-semilattice. Hoop-algbras then
investigated by Büchi and Owens in an unpublished manuscript [8] of 1975, and
they have been studied by Blok and Ferreirim[2],[3], and Aglianò et.al.[1]. The
study of hoops is motivated by researchers both in universal algebra and algebraic
logic.In recent years, hoop theory was enriched with deep structure theorems.

Many of these results have a strong impact with fuzzy logic. Particularly, from
the structure theorem of finite basic hoops one obtains an elegant short proof of
the completeness theorem for propositional basic logic(see Theorem 3.8 of [1])
introduced by Hájek in [13]. The algebraic structures corresponding to Hájek’s
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propositional (fuzzy) basic logic, BL-algebras, are particular cases of hoops and
MV-algebras, product algebras and Gödel algebras are the most known classes of
BL-algebras. Recent investigations are concerned with non-commutative gener-
alizations for these structures.

Hypersructure theory was introduced in 1934[15], by Marty. Some fields of
applications of the mentioned structures are lattices, graphs, coding, ordered sets,
median algebra, automata, and cryptography[9]. Many researchers have worked
on this area. The authors applied hyper structure theory on hyper hoop and intro-
duced and studied hyper hoop algebras in [17]and[16].

In this paper, we investigate some new results on hoop-algebras and hyper
hoop-algebras. We construct a hoop and a hyper hoop on any countable set. Then
using the notion of the fundamental relation we define the fundamental hoop.

2 Preliminaries

First, we recall following basic notions of the hypergroup theory from[10]:
Let A be a non-empty set. A hypergroupoid is a pair (A,�), where � : A ×
A −→ P (A) − {∅} is a binary hyperoperation on A. If associativity low holds,
then (A,�) is called a semihypergroup, and it is said to be commutative if � is
commutative. An element 1 ∈ A is called a unit, if a ∈ 1 � a ∩ a � 1, for all
a ∈ A and is called a scaler unit, if 1� a = a� 1 = {a}, for all a ∈ A. Note that
if B,C ⊆ A, then we consider B � C by B � C =

⋃
b∈B,c∈C

(b� c). (See [10])

Definition 2.1. [3] A hoop-algebra or briefly hoop is an algebra (A,�,→, 1) of
type (2, 2, 0) such that, (HP1): (A,�, 1) is a commutative monoid and for all
x, y, z ∈ A, (HP2): x → x = 1, (HP3): (x � y) → z = x → (y → z) and
(HP4): (x → y) � x = (y → x) � y. On hoop A we define ”x ≤ y” if and only
if x→ y = 1. It is easy to see that ≤ is a partial order relation on A.

Definition 2.2. [17] A hyper hoop-algebra or briefly, a hyper hoop is a non-
empty set A endowed with two binary hyperoperations �,→ and a constant 1
such that, for all x, y, z ∈ A satisfying the following conditions,
(HHA1) (A,�, 1) is a commutative semihypergroup with 1 as the unit,
(HHA2) 1 ∈ x→ x,
(HHA3) (x→ y)� x = (y → x)� y,
(HHA4) x→ (y → z) = (x� y)→ z,
(HHA5) 1 ∈ x→ 1,
(HHA6) if 1 ∈ x→ y and 1 ∈ y → x then x = y,
(HHA7) if 1 ∈ x→ y and 1 ∈ y → z then 1 ∈ x→ z.
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In the sequel we will refer to the hyper hoop (A,�,→, 1) by its universe A.
On hyper hoop A, we define x ≤ y if and only if 1 ∈ x→ y. If A is a hyper hoop,
it is easy to see that ≤ is a partial order relation on A. Moreover, for all B,C ⊆ A
we define B � C iff there exist b ∈ B and c ∈ C such that b ≤ c and define
B ≤ C iff for any b ∈ B there exists c ∈ C such that b ≤ c. A hyper hoop A is
bounded if there is an element 0 ∈ A such that 0 ≤ x, for all x ∈ A.

Proposition 2.3. In any hyper hoop (A,�,→, 1), if x � y and x → y are sin-
gletons, for any x, y ∈ A, then (A,�,→, 1) is a hoop. Then hyper hoops are a
generalization of hoops and every hoop is a trivial hyper hoop.

Proposition 2.4. [17] Let A be a hyper hoop. Then for all x, y, z ∈ A and
B,C,D ⊆ A, the following hold,
(HHA8) x� y � z ⇔ x ≤ y → z,
(HHA9) B � C � D ⇔ B � C → D,
(HHA10) z → y ≤ (y → x)→ (z → x),
(HHA11) z → y � (x→ z)→ (x→ y),
(HHA12) 1� 1 = {1}.

Notations: Let R be an equivalence relation on hyper hoop A and B,C ⊆ A.
Then BRC, BRC and BRC denoted as follows,
(i) BRC if there exist b ∈ B and c ∈ C such that bRc,
(ii) BRC if for all b ∈ B there exists c ∈ C such that bRc and for all c ∈ C there
exists b ∈ B such that bRc,
(iii) BRC if for all b ∈ B and c ∈ C, we have bRc.

Remark 2.5. It is clear that BRC and CRD imply that BRD, for all B,C,D ⊆
A.

Definition 2.6. [17] Let R be an equivalence relation on hyper hoop A. Then R
is called a regular relation on A if and only if for all x, y, z ∈ A,
(i) if xRy, then x� zRy � z,
(ii) if xRy, then x→ zRy → z and z → xRz → y,
(iii) if x→ yR{1} and y → xR{1}, then xRy.

Definition 2.7. [17] Let R be an equivalence relation on hyper hoop A. Then R
is called a strong regular relation on A if and only if, for all x, y, z ∈ A,
(i) if xRy, then x� zRy � z,
(ii) if xRy, then x→ zRy → z and z → xRz → y,

Theorem 2.8. [17] Let R be a regular relation on hyper hoopA and A
R be the set of

all equivalence classes respect to R, that is A
R = {[x]|x ∈ A}. Then (AR ,⊗, ↪→, [1])
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is a hyper hoop, which is called the quotient hyper hoop of A respect to R, where
for all [x], [y] ∈ A

R ,

[x]⊗ [y] = {[t]|t ∈ x� y} and [x] ↪→ [y] = {[z]|z ∈ x→ y}

Theorem 2.9. [17] Let R be a strong regular relation on hyper hoop A. Then
(AR ,⊗, ↪→, [1]) is a hoop which is called the quotient hoop of A respect to R.

Theorem 2.10. [4] Let X and Y be two sets such that |X| = |Y |. If (Y,≤, 0) is
a well-ordered set, then there exists a binary order relation on X and x0 ∈ X ,
such that (X,≤, x0) is a well-ordered set.

Lemma 2.11. [14] Let X be an infinite set. Then for any set {a, b}, we have
|X × {a, b}| = |X|.

3 Constructing of hoops
In this section, we show that we can construct a hoop on any non-empty count-

able set.

Lemma 3.1. Let A and B be two sets such that |A| = |B|. If A is a hoop, then
we can construct a hoop on B by using of A.

Proof. Since |A| = |B|, there exists a bijection ϕ : A → B. For any b1, b2 ∈
B. We define the binary operations �B and→B on B by,

b1 �B b2 = ϕ(a1 �A a2) and b1 →B b2 = ϕ(a1 →A a2)

where b1 = ϕ(a1), b2 = ϕ(a2) and a1, a2 ∈ A. It is easy to show that�B and→B

are well-defined. Moreover, for any b ∈ B we define 1B as 1B = ϕ(1A). Now, by
some modification we can show that (B,�B,→B, 1B) is a hoop.2

Lemma 3.2. For any k ∈ N, we can construct a hoop on Wk = {0, 1, 2, 3, ..., k−
1}.

Proof. Let k ∈ N. We define the operations ”�” and ”→”, on Wk as follows,
for all a, b ∈Wk,

a� b=

{
0 if a+ b ≤ k − 1,

a+ b− k + 1 otherwise

a→ b =

{
k − 1 if a ≤ b,

k − 1− a+ b otherwise
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Now, we show that (Wk,�,→, k − 1) is a hoop,
(HP1): Since, + is commutative, hence � is commutative. Now, we show that �
is associative on Wk. For all a, b, c ∈Wk,
Case 1: If a+ b ≤ k − 1 and b+ c ≤ k − 1, then (a� b)� c = (0)� c = 0 and
a� (b� c) = a� 0 = 0 and so (a� b)� c = a� (b� c).
Case 2: If a + b > k − 1 and b + c ≤ k − 1, since a + b + c ≤ 2(k − 1) and so
a+ b+ c− k + 1 ≤ k− 1, we get (a� b)� c = (a+ b− k + 1)� c = 0. On the
other hand, a� (b� c) = a� 0 = 0 and then (a� b)� c = a� (b� c).
Case 3: If a+b > k−1 and b+c > k−1, then (a�b)�c = (a+b−k+1)�c and
a�(b�c) = a�(b+c−k+1). If a+b+c ≤ 2k then (a�b)�c = a�(b�c) = 0
and if a+ b+ c > 2k then (a� b)� c = a� (b� c) = a+ b+ c− 2k + 2.
Case 4: Let a+ b ≤ k − 1 and b+ c > k − 1. This case is similar to the Case 2.
Now, we have 0� k− 1 = 0 and if 0 6= a ∈Wk, we have a+(k− 1) > k− 1 and
so a� (k − 1) = a+ k − 1− k + 1 = a. Then (k − 1) is the identity of (Wk,�)
and so (Wk,�, k − 1) is a commutative monoid.
(HP2): It is clear that, for all a ∈Wk, a→ a = k − 1.
(HP3): Let a, b, c ∈Wk. We show that (a� b)→ c = a→ (b→ c).
Case 1: If a+ b ≤ k − 1 and a ≤ b ≤ c, then (a� b)→ c = 0→ c = k − 1 and
a→ (b→ c) = a→ (k − 1) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 2: If a + b ≤ k − 1 and a ≤ c < b, (a � b) → c = 0 → c = k − 1 and
since k − 1− b + c ≥ a, a → (b → c) = a → (k − 1− b + c) = k − 1. Hence,
(a� b)→ c = a→ (b→ c).
Case 3: If a+ b ≤ k − 1 and b ≤ a ≤ c, then (a� b)→ c = 0→ c = k − 1 and
a→ (b→ c) = a→ (k − 1) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 4: If a+ b ≤ k − 1 and b ≤ c < a, then (a� b)→ c = 0→ c = k − 1 and
a→ (b→ c) = a→ (k − 1) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 5: If a+ b ≤ k − 1 and c ≤ b ≤ a, then (a� b)→ c = 0→ c = k − 1. On
the other hand since a+b ≤ k−1, we get a+b−c ≤ k−1, a ≤ (k−1−b+c) and
a→ (k− 1− b+ c) = k− 1. Then a→ (b→ c) = a→ (k− 1− b+ c) = k− 1.
Hence, (a� b)→ c = a→ (b→ c).
Case 6: If a+b ≤ k−1 and c ≤ a < b, then (a�b)→ c = 0→ c = k−1. On the
other hand since a+ b ≤ k− 1, we get a+ b− c ≤ k− 1, a ≤ (k− 1− b+ c) and
a→ (k− 1− b+ c) = k− 1. Then a→ (b→ c) = a→ (k− 1− b+ c) = k− 1.
Hence, (a� b)→ c = a→ (b→ c).
Case 7: Let a + b > k − 1 and a ≤ b ≤ c. Since a ≤ b ≤ c, we get a + b − c ≤
a ≤ k − 1 and so a + b − k + 1 ≤ c. Then (a � b) → c = (a + b − k + 1) →
c = k − 1. On the other hand, a → (b → c) = a → (k − 1) = k − 1. Hence,
(a� b)→ c = a→ (b→ c).
Case 8: Let a+ b > k− 1 and a ≤ c < b. Since a ≤ c < b we get a+ b− c ≤ b ≤
k− 1 and so a+ b−k+1 ≤ c. Then (a� b)→ c = (a+ b−k+1)→ c = k− 1.
On the other hand, since k − 1 − b + c ≥ c ≥ a, we get a → (b → c) = a →
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(k − 1− b+ c) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 9: Let a+b > k−1 and b ≤ a ≤ c. Since b ≤ a ≤ c, we get a+b−c ≤ a ≤
k− 1 and so a+ b−k+1 ≤ c. Then (a� b)→ c = (a+ b−k+1)→ c = k− 1.
On the other hand since k − 1 − b + c ≥ c ≥ a, we get a → (b → c) = a →
(k − 1− b+ c) = k − 1. Hence, (a� b)→ c = a→ (b→ c).
Case 10: Let a+ b > k − 1 and b ≤ c < a. Since b ≤ c < a, we get a+ b− c ≤
a ≤ k − 1 and so a + b − k + 1 ≤ c. Then (a � b) → c = (a + b − k + 1) →
c = k − 1. On the other hand a → (b → c) = a → (k − 1) = k − 1. Hence,
(a� b)→ c = a→ (b→ c).
Case 11: If a+ b > k− 1 and c ≤ b ≤ a, then (a� b)→ c = (a+ b−k+1)→ c
and a → (b → c) = a → (k − 1 − b + c). Hence, if a + b − c ≤ k − 1,
then (a � b) → c = a → (b → c) = k − 1 and if a + b − c > k − 1, then
(a� b)→ c = a→ (b→ c) = 2k − 2− a− b+ c.
Case 12: If a+ b > k− 1 and c ≤ a < b, then (a� b)→ c = (a+ b−k+1)→ c
and a → (b → c) = a → (k − 1 − b + c). Hence, if a + b − c ≤ k − 1,
then (a � b) → c = a → (b → c) = k − 1 and if a + b − c > k − 1, then
(a� b)→ c = a→ (b→ c) = 2k − 2− a− b+ c
(HP4): Now, we show that (a→ b)� a = (b→ a)� b, for all a, b ∈Wk.
Case 1: If a ≤ b, then (a → b) � a = (k − 1) � a = a and (b → a) � b =
(k−1−b+a)�b = k−1−b+a+b−k+1 = a. Hence, (a→ b)�a = (b→ a)�b.
Case 2: If a > b, then (a→ b)�a = (k−1−a+b)�a = k−1−a+b+a−k+1 = b
and (b→ a)� b = (k − 1)� b = b. Hence, (a→ b)� a = (b→ a)� b.
Therefore, (Wk,�,→, k − 1) is a hoop.2

Theorem 3.3. Let A be a finite set. Then there exist binary operations � and→
and constant 1 on A, such that (A,�,→, 1), is a hoop.

Proof. Let A be a finite set. Then, there exists k ∈ N such that |A| = |Wk|.
Now, by Lemma 3.2, (Wk,�,→, 1) is a hoop and so by Lemma 3.1, there exist
binary operations � and →, and constant 1 on A , such that (A,�,→, 1) is a
hoop.2

Lemma 3.4. Let 1 < n ∈ Q. Then there exist binary operations � and → on
E = Q ∩ [1, n], such that (E,�,→, n) is a hoop.

Proof. For any 1 < n ∈ E, we define the binary operations � and→ on E
as follows, for all a, b ∈ E,

a� b=

{
1 if ab ≤ n,
ab
n

otherwise
a→ b =

{
n if a ≤ b,
nb
a

otherwise

Clearly, � and→ are well-defined on E. Now, we show that (E,�,→, n) is
a hoop.
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(HP1): For all a ∈ E, if a 6= 1, since an > n we have a � n= n � a = an
n

= a
and if a = 1, we have a � n = 1 � n = 1 = a. Then n is the identity element of
(E,�). Now, we show that � is associative on E. Let a, b, c ∈ E,
Case 1: If ab ≤ n and bc ≤ n, then (a� b)� c = 1� c = 1. On the other hand
a� (b� c) = a� (1) = 1. Then (a� b)� c = a� (b� c).
Case 2: If ab ≤ n and bc > n, then (a � b) � c = 1� c = 1. On the other hand
b � c = bc

n
and then a � (b � c) = a � ( bc

n
). Since abc

n
= ab

n
c ≤ c ≤ n, we get

a� (b� c) = 1 and so (a� b)� c = a� (b� c).
Case3: If ab > n and bc > n, then (a � b) � c = (ab

n
) � c. On the other hand

a � (b � c) = a � ( bc
n
). If abc

n
≤ n, then (a � b) � c = a � (b � c) = 1 and if

abc
n
> n, then (a� b)� c = a� (b� c) = abc

n2 . Hence, (a� b)� c = a� (b� c).
Case 4: Let ab > n and bc ≤ n. This case is similar to the Case 2.
It is clear that, for all a, b ∈ E, a� b = b� a. Hence, (E,�, n) is a commutative
monoid.
(HP2): It is clear that, for all a ∈ E, we have a→ a = n.
(HP3): For all a, b, c ∈ E, we have the following cases,
Case 1: If b ≤ c and ab ≤ n, then a → (b → c) = a → n = n and (a � b) →
c = 1→ c = n. Then a→ (b→ c) = (a� b)→ c.
Case 2: If b ≤ c and ab > n, then a → (b → c) = a → n = n and since
a
n
< 1 , we get ab

n
< b ≤ c and so (a � b) → c = ab

n
→ c = n. Then

a→ (b→ c) = (a� b)→ c.
Case 3: If b > c and ab ≤ n, since ab ≤ n ≤ nc and so a ≤ nc

b
, then a →

(b → c) = a → nc
b
= n. On the other hand, (a � b) → c = 1 → c = n. Then

a→ (b→ c) = (a� b)→ c.
Case 4: If b > c and ab > n, then a → (b → c) = a → nc

b
and (a � b) → c =

ab
n
→ c. We have, a ≤ nc

b
if and only if ab

n
≤ c, and so a→ (b→ c) = (a�b)→ c.

HP4: For all a, b ∈ E, we have the following cases,
Case 1: If a ≤ b, then a � (a → b) = a � n = an

n
= a and b � (b → a) =

b� na
b
= bna

bn
= a and so a� (a→ b) = b� (b→ a).

Case 2: If a > b, then a � (a → b) = a � nb
a

= anb
an

= b and b � (b → a) =
b� n = bn

n
= b and so a� (a→ b) = b� (b→ a).

Therefore, (E,�,→, n) is a hoop.2

Theorem 3.5. Let A be an infinite countable set. Then there exist binary opera-
tions � and→ and constant 1 on A, such that (A,�,→, 1) is a hoop.

Proof. Let A be an infinite countable set and E = Q∩ [1, n]. Then by Lemma
3.4, (E,�,→, 1) is an infinite countable hoop and |A| = |E|. Hence, by Lemma
3.1, there exist binary operations� and→ and constant 1, such that (A,�,→, 1)
is a hoop.2

Corollary 3.6. For any non-empty countable set A, we can construct a hoop on
A.
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Proof. Let A be a non-empty countable set. Then, A is a finite set, or an
infinite countable set . Then by the Theorems 3.3 and 3.5, the proof is clear.2

4 Constructing of some hyper hoops
In this section first we show that the Cartesian product of hoops is a hyper

hoop and then we construct a hyper hoop by any non-empty countable set.

Theorem 4.1. Let (A,�A,→A, 1A) and (B,�B,→B, 1B) be two hoops. Then
there exist hyperoperations �, → and constant 1 on A × B such that (A ×
B,�,→, 1) is a hyper hoop.

Proof. For any (a1, b1), (a2, b2) ∈ A × B, we define the binary hyperopera-
tions �,→ on A×B by,

(a1, b1)� (a2, b2) = {(a1 �A a2, b1), (a1 �A a2, b2)},

(a1, b1)→ (a2, b2) =

{
{(a1 →A a2, b2), (a1 →A a2, 1B)} if b1 = b2,

{(a1 →A a2, b2)} otherwise

and constant 1 = (1A, 1B). It is easy to show that the hyperoperations are well-
defined. Now, we show that (A×B,�,→, 1) is a hyper hoop.
(HHA1): Since �A , is associative and commutative, we get � is associative and
commutative. Moreover, for all (a, b) ∈ A × B, we have (a, b) � (1A, 1B) =
{(a�A 1A, b), (a�A 1A, 1B)} 3 (a, b). Then (A× B,�,→, 1) is a commutative
semihypergroup with 1 as the unit, where 1 = (1A, 1B).
(HHA2): For all (a, b) ∈ A×B, we have

(a, b)→ (a, b) = {(a→A a, b), (a→A a, 1B)} =

{(a→A a, b), (1A, 1B)} 3 (1A, 1B) = 1

(HHA3): For all (a1, b1), (a2, b2) ∈ A×B, we have the following cases,
Case 1: If b1 6= b2, then,

((a1, b1)→ (a2, b2))� (a1, b1) = {(a1 → a2, b2)} � (a1, b1)

= {((a1 → a2)�A a1, b1), ((a1 → a2)�A a1,
b2)}

= {((a2 → a1)�A a2, b1), ((a2 → a1)�A a2,
b2)}

= ((a2, b2)→ (a1, b1))� (a2, b2)
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Case 2: If b1 = b2, then,

((a1, b1)→ (a2, b2))� (a1, b1) = {(a1 → a2, b2), (a1 → a2, 1B)} � (a1, b1)

= {((a1 → a2)�A a1, b1), ((a1 → a2)�A a1,
b2), ((a1 → a2)�A a1, 1B)}

= {((a2 → a1)�A a2, b1), ((a2 → a1)�A a2,
b2), ((a2 → a1)�A a2, 1B)}

= ((a2, b2)→ (a1, b1))� (a2, b2)

(HHA4): For all (a1, b1), (a2, b2), (a3, b3) ∈ A×B, we have the following cases,
Case 1: If b1 = b2 = b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3), ((a2 →A a3),

1B)}
= {(a1 →A (a2 →A a3), 1B), (a1 →A (a2 →A

a3), b3)}
= {((a1 �A a2)→A a3, 1B), ((a1 �A a2)→A

a3), b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)

Case 2: If b1 6= b2 = b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3), ((a2 →A a3),

1B)}
= {(a1 →A (a2 →A a3), 1B), (a1 →A (a2 →A

a3), b3)}
= {(a1 �A a2)→A (a3, 1B), ((a1 �A a2)→A

a3), b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)

Case 3: If b1 = b2 6= b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3)}
= {a1 →A (a2 →A a3), b3)}
= {((a1 �A a2)→A a3, b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)
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Case 4: If b1 6= b2 6= b3,

(a1, b1)→ ((a2, b2)→ (a3, b3)) = (a1, b1)→ {((a2 →A a3), b3)}
= {(a1 →A (a2 →A a3), b3)}
= {((a1 �A a2)→A a3, b3)}
= ((a1, b1)� (a2, b2))→ (a3, b3)

(HHA5): For all (a, b) ∈ A×B, we have the following cases,
Case 1: If b = 1B, then (a, b) → (1A, 1B) = {(a → 1A, 1B), (a → 1A, b →
1B)} = {(1A, 1B)} 3 (1A, 1B).
Case 2: If b 6= 1B, then (a, b) → (1A, 1B) = {(a → 1A, 1B)} = {(1A, 1B)} 3
(1A, 1B).
(HHA6): For all (a1, b1), (a2, b2) ∈ A× B, if (1A, 1B) ∈ (a1, b1)→ (a2, b2) and
(1A, 1B) ∈ (a2, b2)→ (a1, b1), then we have the following cases,
Case 1: If b1 6= b2, then (1A, 1B) ∈ {(a1 →A a2, b2)} and (1A, 1B) ∈ {(a2 →A

a1, b1)}. Hence, 1A = a1 →A a2 and 1A = a2 → a1 and 1B = b1 = b2. Since A
is a hoop, we get a1 = a2 and so (a1, b1) = (a2, b2)
Case 2: If b1 = b2, then (1A, 1B) ∈ {(a1 →A a2, b2), (a1 →A a2, 1B)} and
(1A, 1B) ∈ {(a2 →A a1, b1), (a2 →A a1, 1B)}. Hence 1A = a1 →A a2 and
1A = a2 → a1. Since A is a hoop, we get a1 = a2 and by assumption, we have
b1 = b2. So (a1, b1) = (a2, b2).
(HHA7): For all (a1, b1), (a2, b2), (a3, b3) ∈ A × B, let (1A, 1B) ∈ (a1, b1) →
(a2, b2) and (1A, 1B) ∈ (a2, b2)→ (a3, b3). Then we consider the following cases:
Case 1: If b1 = b2 = b3, then (1A, 1B) ∈ {(a1 →A a2, 1B), (a1 →A a2, b2)} and
(1A, 1B) ∈ {(a2 →A a3, 1B), (a2 →A a3, b3)}. Hence 1A = a1 →A a2 and
1A = a2 → a3. Since A is a hoop, we get 1A = a1 →A a3. Hence, (a1, b1) →
(a3, b3) = {(a1 →A a3, b3), (a1 →A a3, 1B)} = {(1A, b3), (1A, 1B)} 3 (1A, 1B).
Case 2: If b1 6= b2 = b3, then (1A, 1B) ∈ {(a1 →A a2, b2)} and (1A, 1B) ∈
{(a2 →A a3, 1B), (a2 →A a3, b3)}. Hence 1A = a1 →A a2 and 1A = a2 → a3
and b2 = b3 = 1B. Since A is a hoop, we get 1A = a1 →A a3. Hence,
(a1, b1)→ (a3, b3) = {(a1 →A a3, b3)} = {(1A, 1B)} 3 (1A, 1B).
Case 3: Let b1 = b2 6= b3. Then proof is similar to the Case 2.
Case 4: If b1 6= b2 6= b3, then (1A, 1B) ∈ {(a1 →A a2, b2)} and (1A, 1B) ∈
{(a2 →A a3, b3)}. Hence, 1A = a1 →A a2 and 1A = a2 → a3 and b2 = b3 = 1B.
Since A is a hoop, we get 1A = a1 →A a3. Hence, (a1, b1)→ (a3, b3) = {(a1 →A

a3, b3)} = {(1A, 1B)} 3 (1A, 1B).

Therefore,(A×B,�,→, 1) is a hyper hoop, where 1 = (1A, 1B).2

Lemma 4.2. LetA andB be two sets such that |A| = |B|. If (A,�A,→A, 1A) is a
hyper hoop, then there exist hyperoperations�B ,→B and constant 1B onB, such
that (B,�B,→B, 1B) is a hyper hoop and (A,�A,→A, 1A) ∼= (B,�B,→B, 1B).
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Proof. Since |A| = |B|, then there exists a bijection ϕ : A → B . For any
b1, b2 ∈ B, there exist a1, a2 ∈ A such that b1 = ϕ(a1) and b2 = ϕ(a2). Then
we define the hyperoperations �B,→B on B by, b1 �B b2 = {ϕ(a)|a ∈ a1 � a2},
and b1 →B b2 = {ϕ(a)|a ∈ a1 → a2}. It is easy to show that �B,→B are
well-defined and (B,�B,→B, 1B) is a hyper hoop, where 1B = ϕ(1A). Now, we
define the map θ : (A,�A,→A, 1A) → (B,�B,→B, 1B) by θ(x) = ϕ(x). Since
ϕ is a bijection then θ is a bijection and it is easy to see that θ is a homomorphism
and so it is an isomorphism.2

Corollary 4.3. For any non-empty countable set A and any hoop B, we can con-
struct a hyper hoop on A×B.

Proof. By Corollary 3.6, we can construct a hoop on A and by Theorem 4.1,
we can construct a hyper hoop on A×B.2

Corollary 4.4. Let A be an infinite countable set. We can construct a hyper hoop
on A.

Proof. Let A be an infinite countable set. Then by Corollary 3.6, we can
construct a hoop on A. Now, By Theorem 3.3, for arbitrary elements x, y not
belonging to A, we can define operations � and → on the set {x, y}, such that
({x, y},�,→) is a hoop. Then by Theorem 4.1, we can construct a hyper hoop
on A× {x, y}. Then by Lemma 2.11 and 4.2, there exists a hyper hoop on A.2

5 Fundametal hoops
In this section we apply the β∗ relation to the hyper hoops and obtain some

results. Then we show that any hoop is a fundamental hoop.

Let (A,�,→, 1) be a hyper hoop and U(A) denote the set of all finite com-
binations of elements of A with respect to � and→. Then, for all a, b ∈ A, we
define aβb if and only if {a, b} ⊆ u, where u ∈ U(A), and aβ∗b if and only if there
exist z1, ..., zm+1 ∈ A with z1 = a, zm+1 = b such that {zi, zi+1} ⊆ ui ⊆ U(A),
for i = 1, ...,m (In fact β∗ is the transitive closure of the relation β).

Theorem 5.1. Let A be a hyper hoop. Then β∗ is a strong regular relation on A.
Proof. Let aβ∗b, for a, b ∈ A. Then there exist x1, ..., xn+1 ∈ A with

x1 = a, xn+1 = b and ui ∈ U(A) such that {xi, xi+1} ⊆ ui, for 1 ≤ i ≤ n. Let
zi ∈ xi → c, for all 1 ≤ i ≤ n+ 1, c ∈ A. Then we have,

{zi, zi+1} ⊆ (xi → c) ∪ (xi+1 → c) ⊆ ui → c ⊆ U(A), for all 1 ≤ i ≤ n.

Hence, z1β∗zn+1, where z1 ∈ a → c and zn+1 ∈ b → c and so a → cβ∗b → c.
Similarly, we can show that c → aβ∗c → b. Now, by the same way we can prove
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that aβ∗b implies a�cβ∗b�c, for all c ∈ A. Hence, β∗ is a strong regular relation
on A.2

Corollary 5.2. Let A be a hyper hoop. Then ( A
β∗
,⊗, ↪→) is a hoop, where ⊗ and

↪→ are defined by Theorem 2.8.
Proof. By Theorem 2.9 the proof is clear.2

Theorem 5.3. Let A be a hyper hoop. Then the relation β∗ is the smallest equiv-
alence relations γ defined on A such that the quotient A

γ
is a hoop with operations

γ(x)⊗ γ(y) = γ(t) : t ∈ x� y and γ(x) ↪→ γ(y) = γ(z) : z ∈ x→ y

where γ(x) is equivalence class of x with respect to the relation γ.
Proof. By Corollary 5.2, A

β∗
is a hoop. Now, let γ be an equivalence relation

on A such that A
γ

is a hoop. Let xβy, for x, y ∈ A and π : A→ A
γ

be the natural
projection such that π(x) = γ(x). It is clear that π is a homomorphism of hyper
hoops. Then there exists u ∈ U(A) such that {x, y} ⊆ u. Since π is a homomor-
phism of hyper hoops, we get |π(u)| = |γ(u)| = 1. Since {π(x), π(y)} ⊆ π(u)
and |π(u)| = 1, we get π(x) = π(y) and so γ(x) = γ(y) i.e. xγy. Hence,
β ⊆ γ. Now, let aβ∗b, for a, b ∈ A. Then there exist x1, ..., xn+1 ∈ A, such that
a = x1βx2, ..., βxn+1 = b. Since β ⊆ γ, we get a = x1γx2, ..., γxn+1 = b. Then
since γ is a transitive relation on A, we get aγb and so β∗ ⊆ γ.2

Corollary 5.4. The relation β∗ is the smallest strong regular relation on hyper
hoop A.

Proof. The proof is straightforward.2

Lemma 5.5. If A1 and A2 are two hyper hoops, then the Cartesian product A1 ×
A2 is a hyper hoop with the unit (1A1 , 1A2) by the following hyperoperations, for
(x1, y1), (x2, y2) ∈ A1 × A2,

(x1, y1)� (x2, y2) = {(a, b)|a ∈ x1 � x2, b ∈ y1 � y2},
(x1, y1)→ (x2, y2) = {(a′, b′)|a′ ∈ x1 → x2, b

′ ∈ y1 → y2}

Proof. The proof is straightforward.2

Lemma 5.6. Let A1 and A2 be two hyper hoops. Then, for a, c ∈ A1 and b, d ∈
A2, we have (a, b)β∗A1×A2

(c, d) if and only if aβ∗A1
c and bβ∗A2

d.
Proof. We know that u ∈ U(A1 × A2) if and only if there exist u1 ∈ U(A1)

and u2 ∈ U(A2) such that u = u1 × u2. Then (a, b)β∗A1×A2
(c, d) if and only if

there exist u1 ∈ U(A1) and u2 ∈ U(A2) such that {(a, b), (c, d)} ⊆ u1×u2 if and
only if {a, c} ⊆ u1 and {b, d} ⊆ u2 if and only if aβ∗A1

c and bβ∗A2
d.2
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Theorem 5.7. Let A1 and A2 be two hyper hoops. Then A1×A2

β∗A1×A2

∼= A1

β∗A1

× A2

β∗A2

.

Proof. Letϕ : A1×A2

β∗
→ A1

β∗A1

× A2

β∗A2

be defined byϕ(β∗(x, y)) = (β∗A1
(x), β∗A2

(y)),

where β∗ = β∗A1×A2
By Lemma 5.5, A1×A2

β∗
is well-define. It is clear that ϕ is onto.

By Lemma 5.6, we have β∗(x1, y1) = β∗(x2, y2) if and only if β∗A1
(x1) = β∗A2

(x2)
and β∗A2

(y1) = β∗A2
(y2), for any (x1, y1), (x2, y2) ∈ A1×A2. So, ϕ is well defined

and one to one. Also, by considering the hyperoperations ⊗ and ↪→ defined in
Theorem 2.8, we have,

ϕ(β∗(x1, y1) ↪→ β∗(x2, y2)) = ϕ({β∗(a, b)|a ∈ x1 → x2, b ∈ y1 → y2})
= {ϕ(β∗(a, b))|a ∈ x1 → x2, b ∈ y1 → y2}
= {(β∗A1

(a), β∗A2
(b))|a ∈ x1 → x2, b ∈ y1 → y2}

= (β∗A1
(x1) ↪→ β∗A1

(x2), β
∗
A2
(y1) ↪→ β∗A2

(y2))

= (β∗A1
(x1), β

∗
A2
(y1)) ↪→ (β∗A1

(x2), β
∗
A2
(y2))

= ϕ(β∗(x1, y1)) ↪→ ϕ(β∗(x2, y2))

Similarly, we can show thatϕ(β∗(x1, y1)⊗β∗(x2, y2)) = ϕ(β∗(x1, y1))⊗ϕ(β∗(x2,
y2)). Moreover, it is clear that ϕ(β∗(1A1 , 1A2)) = (β∗(1A1), β

∗(1A2)). Hence, ϕ
is an isomorphism.2

Corollary 5.8. Let A1, A2, ...., An be hyper hoops. Then,

A1×A2×....×An

β∗A1×A2×....×An

∼= A1

β∗1
× A2

β∗2
× .......× An

β∗n

Proof. The proof is straightforward.2

Theorem 5.9. Let A and B be two sets such that |A| = |B|. If (A,�A,→A, 1A)
is a hyper hoop, then there exist hyperoperations �B and→B and constant 1B on
B such that (B,�B,→B, 1B) is a hyper hoop and (A,�A,→A,1A)

β∗A

∼= (B,�B ,→B ,1b)
β∗B

.

Proof. Since |A| = |B|, then by Lemma 4.2, there exist binary hyper-
operations �B and →B, such that (B,�B,→B, 1B) is a hyper hoop. More-
over, there exists an isomorphism f : (A,�A,→A, 1A) → (B,�B,→B, 1B),
such that f(1A) = 1B. Now, we define ϕ : (A,�A,→A,1A)

β∗A
→ (B,�B ,→B ,1B)

β∗B
by

ϕ(β∗A(x)) = β∗B(f(x)). Since f is an isomorphism, ϕ is onto. Let y1 , y2 ∈
B. Then there exist a1, a2 ∈ A such that b1 = f(a1) and b2 = f(a2). Then
β∗A(a1) = β∗A(a2) iff a1β∗Aa2 iff there exists u ∈ U(A) such that {a1, a2} ⊆ u
iff there existes f(u) ∈ U(B) : {f(a1), f(a2)} ⊆ f(u) iff β∗B(b1) = β∗B(b2) iff
β∗B(f(a1)) = β∗B(f(a2)). Then ϕ is well-defined and one to one. Also, by consid-
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ering the hyperoperations ⊗ and ↪→ defined in Theorem 2.8, we have,

ϕ(β∗A(a1)⊗ β∗A(a2)) = ϕt∈a1�a2(β
∗
A(t)) = β∗t∈a1�a2(f(t))

= β∗t′∈f(a1�a2)(t
′) = β∗t′∈f(a1)�f(a2)(t

′) = β∗B(f(a1))⊗ β∗B
(f(a2))

= ϕ(β∗A(a1))⊗ ϕ(β∗A(a2))

By the same way, we can show that

ϕ(β∗A(a1) ↪→ β∗A(a2)) = ϕ(β∗A(a1)) ↪→ ϕ(β∗A(a2))

Since f is an isomorphism, we get ϕ(β∗A(1A)) = β∗B(f(1A)) = β∗B(1B). Hence, ϕ
is an isomorphism.2

Definition 5.10. Let A be a hoop algebra. Then A is called a fundamental hoop,
if there exists a nontrivial hyper hoop B, such that B

β∗B

∼= A

Theorem 5.11. Every hoop is a fundamental hoop.
Proof. Let A be a hoop. Then by Theorem 4.1, for any hoop B, A × B is a

hyper hoop. By considering the hyperoperations� and→ defined in Theorem 4.1,
we get that any finite combination u ∈ U(A× B) is the form of u = {(a, xi)|a ∈
A, xi ∈ B}. Hence, for any (a1, b1), (a2, b2) ∈ A×B,

(a1, b1)β
∗(a2, b2)⇔ ∃u ∈ U(A×B) such that

{(a1, b1), (a2, b2)} ⊆ u⇔ a1 = a2

Hence, for any (a, b) ∈ A×B, β∗(a, b) = {(a, x)|x ∈ B}.
Now, we define the map ψ : A×B

β∗
→ A by, ψ(β∗(a, b)) = a. It is clear that,

β∗(a1, b1) = β∗(a2, b2)⇔ a1 = a2 ⇔ ψ(β∗(a1, b1)) = ψ(β∗(a2, b2)).

Then, ψ is well defined and one to one. In the following, we show that ψ is a
homomorphism. For this we have,

ψ(β∗(a1, b1)⊗ β∗(a2, b2)) = ψ(β∗(u, v)) : (u, v) ∈ (a1, b1)� (a2, b2)

= ψ(β∗(u, v)) : (u, v) ∈ {((a1 � a2), b1), ((a1 �
a2), b2)}

= {u|u ∈ a1 � a2} = a1 � a2
= ψ(β∗(a1, b1))� ψ(β∗(a2, b2))
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and similarly, for the operation ↪→, we have the following cases,
Case 1: If b1 6= b2, then,

ψ(β∗(a1, b1) ↪→ β∗(a2, b2)) = ψ(β∗(u, v)) : (u, v) ∈ (a1, b1)→ (a2, b2)

= ψ(β∗(u, v)) : (u, v) ∈ {((a1 → a2), b2)}
= {u|u ∈ a1 → a2} = a1 → a2

= ψ(β∗(a1, b1))→ ψ(β∗(a2, b2))

Case 2:If b1 = b2, then,

ψ(β∗(a1, b1) ↪→ β∗(a2, b2)) = ψ(β∗(u, v)) : (u, v) ∈ (a1, b1)→ (a2, b2)

= ψ(β∗(u, v)) : (u, v) ∈ {((a1 → a2), b2), ((a1 →
a2), 1B)}

= {u|u ∈ a1 → a2} = a1 → a2

= ψ(β∗(a1, b1))→ ψ(β∗(a2, b2))

Clearly, ψ(β∗(1A, 1B) = 1A and ψ is onto. Therefore, ψ is an isomorphism i.e.
A×B
β∗
∼= A and so A is fundamental.2

Corollary 5.12. For any non-empty countable set A, we can construct a funda-
mental hoop on A.

Proof. By Corollary 3.6 and Theorem 5.11 the proof is clear.2

References
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Abstract  

At the present time great emphasis is put on making accessible new 

knowledge to students through information and communication 

technologies in effort to facilitate and introduce objects, phenomena 

and reality. Information and communication technologies complement 

and develop traditional methods such as direct observation, 

manipulation with objects, experiment. It is justified mainly at 

teaching natural sciences. The possibilities of solving physical 

problem with the use of software tools are presented in the paper. 

Keywords: information and communication technologies, electrical 

circuit, Kirchhoffov´s lows, MS Excel, Matlab. 

 

 

1 Introduction  
 

Information and communication technologies currently present a set of 

modern means that are used for preparation, processing and distribution of data 

and information, but also process control with the aim of achieving more 

effective results and searching for optimal problem solutions at various fields 

and areas of human activities [1], [2]. Information and communication 

technologies significantly influence even university education. Information and 

communication technologies provide incomparably bigger information basis as 

it was several years ago. This gradually changes the style of teaching and makes 

teachers implement new technologies not only in direct pedagogical activity, but 
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also at its preparation. Implementation of information and communication 

technologies into education enables new forms of university studies. We can 

stimulate the interest of students in studies of natural science subjects as 

mathematics, physics, chemistry, create conditions for educational 

individualization and improve conditions to raise the quality of education by 

a suitable combination of traditional and modern teaching methods [3]. 

In teaching physics there exist possibilities for effective and suitable 

integration of information and communication technologies into schooling 

system. One of them is physical problem solution with the support of computer. 

This paper concretely presents the solution of physical problem from the part 

Physics – Power and Magnetism by the use of mathematical software MS Excel 

a Matlab. 

 

2  Physical analysis of the problem 

 

Problem: Figure out the currents in individual circuit branches in Fig. 1, if 

source voltage and resistance are: U01=10 V, U02=20 V, U03=15 V, U04=10 V, 

R1=10 , R2=15 , R3=30 , R4=20 , R5=10 , R6=15 , R7=10 . 

 

Solution: Kirchhoff´s rules are used to figure out the currents in the circuit 

[4]. The first of Kirchhoff´s rules describes the law of electric charge 

preservation: The sum of all the currents flowing into the junction point must 

equal the sum of all the currents leaving the point, i.e. 




n

k

kI

1

0 . The second of 

Kirchhoff´s rules forms the law of electric energy preservation for electric 

circuits: Algebraic sum of electromotive voltages in any closed part of the 

electrical network is equal to the sum of ohmic voltages at individual branches 

of this closed part, i.e. 




n

k

kk

m

i

ei IRU

11

. 

 

 
Fig. 1. Circuit 
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Based on the first and the second of Kirchhoff´s rules (Fig. 1) for the 

currents and electromotive voltages, it is valid 
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The set of 7 equations on 7 unknown quantities I1, I2, ..., I7 was obtained. 

Numeric values are inducted for the known quantities and we have 
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3  Analytic solution of the problem 
 

Based on analysis of the problem and use of electrical laws the system of 7 

equations in 7 variables was obtained, where analytic solution is not simple. In 

general it is possible to solve the system of n equations in n variables in three 

ways: 

1. solving the system of linear equations by means of Cramer´s Rule, 

2. solving the system of linear equations by means of inversion matrix, 

3. solving the system of linear equations by Gauss elimination method. 

Gauss elimination method appears to be a suitable method of solving the 

system of n equations in n variables, if 3>n  [5]. By means of equivalent line 

adjustment the matrix of the system of equations, which is augmented by the 

second column (so called augmented matrix of the system) to a triangle shape, is 

modified. We write to such an augmented matrix an appropriate system, which 

is equivalent with the original system, i.e. it has the same family of solutions. 

Frobenius norm and its consequences can be used to solve such a modified 

system. 

The system of heterogeneous equations can be solved only if the rank of a 

matrix is equal to the rank of an augmented matrix of the system. 
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Consequence 1: If nhh  )A((A)  (n is the number of unknowns), then the system 

has only one solution. 

Consequence 2: If nhh <)A((A)   (n is the number of unknowns), then the system 

has infinite number of solutions and hn  unknowns can be 

arbitrarily selected. 

Consequence 3: If )A((A)  hh , then the system has no solution. 

We get the values of unknowns by gradual substitution into previous 

equations. 

 

The system of equations is written into the form of an augmented matrix 

and we get by means of equivalent line adjustment 

 











































































































































































































110

530

0

15

0

20

0

2020000000

1060159000000

1110000

0151020000

0011100

0002030150

0000111

420

530

0

15

0

20

0

960159000000

1060159000000

1110000

0151020000

0011100

0002030150

0000111

1010

5

0

15

0

20

0

000001510

101500000

1110000

0151020000

0011100

0002030150

0000111

5

15

20

10

0

0

0

101500000

0151020000

0002030150

000001510

1110000

0011100

0000111

6

1

R

R



 



Application of mathematical software in solving the problems of electricity 

45 

 

The rank of a matrix is equal to the rank of an augmented matrix, i.e. 

nhh  )A((A)  (n is the number of unknowns), then the system has one solution 

that is determined from an appropriate system: 
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We get the following current values in the circuit: 
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









 

It results from the negative current values that currents in the circuit are 

in the opposite direction as we selected. 

 

Analytic solution of the system of 7 equations in 7 variables by Gauss 

elimination method requires not only knowledge of linear algebra (matrix 
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algebra), but also good mathematical skills and time. Numerical solution of the 

system of equations by means of various mathematical software tools such as 

MS Excel, Mathematica or MATLAB is much more easier. 

 

4  Using software tools at the problem solution 
 

4.1 The problem solution by means of MS Excel 

 

In current computing technique it is possible to use standard programs 

for the matrix inversion up to relatively big number of equations (hundreds of 

variables). One of the possibilities is the solution in MS Excel [6]. We write the 

system of equations in matrix form 

 

bA 































































x.

b

b

b

x

x

x

aaa

aaa

aaa

nnnnnn

n

n











2

1

2

1

21

22221

12111

 

 

where A is the matrix of coefficients, x is the vector of unknowns and b is the 

vector of the second members. We get by multiplying A
-1 

from the left 

bAAA
-1-1  xx . If we calculate the inversion matrix, xk unknowns can be 

obtained by multiplication of the matrix and vector, which is procedure that is 

optimized very well and is the part of standard libraries of subprograms. To 

calculate the inversion matrix MINVERSE functions from the offer of MS Excel 

More Functions is used. To calculate the roots of the system of equations (A
-1 

b) 

MMULT function is used. The result of the solution can be found in Fig. 2. 
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Fig. 2. Numerical solution of the set of equations in MS Excel 

Another possibility to solve the system of equations is to use the MS 

Excel Solutionist [7], [8]. From the task and solution of the problem in the 

Solutionist we get (Fig. 3) 
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Fig. 3. Numerical solution of the system of problems in the MS Excel 

Solutionist 

 

From both solutions in MS Excel we get the following current values in 

the circuit 

 

A054460A297030A242570

A405940A163370A465350A301980

765

4321

,I,,I,,I

,,I,,I,,I,,I




 

 

It results from the negative values of the current that currents have reverse 

directions as it was selected. 

 

4.2 Problem solution by means of Matlab 

MATLAB presents highly functional language for technical calculations. 

It integrates the calculations, visualization and programming into simply usable 

environment where the problems and solutions are expressed in natural form [9], 

[10]. The field is the basic data type of this interactive system. This property 

together with number of built-in functions enables relatively easy solution of 

many technical problems, mainly those that lead to the vector or matrix 

formulations, in much shorter time as solution in classic program languages. To 

calculate the currents I1, I2, ..., I7 the method of node voltage is used. This 

method comes from the fact that )1( u  equations is written by means of 

Kirchhoff´s first law applied to suitably selected nodes. In these equations the 

equations of Kirchhoff´s second law written for appropriate loops are implicitly 

included. That is why voltages on tree´s branches are selected as unknowns at 

the method of node voltage. To determine node voltages it is necessary to solve 

(u-1) equations. After calculation of node voltages the currents of the circuit are 

determined. 
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We write for B1, B2 and B3 nodes according to Kirchhoff´s first law 

0

0

0

7653

5432

3211







III:B

III:B

III:B

 

 

It is possible to express above mentioned currents by means of known 

node voltages with regard to the selected reference node 

 

0

0

0

7

043

6

033

5

32
3

5

32

4

2

3

21
2

3

21

2

021

1

101
1

























R

UU

R

UU

R

UU
:B

R

UU

R

U

R

UU
:B

R

UU

R

UU

R

UU
:B

BBBB

BBBBB

BBBB

 

 

We write the equations in the matrix form 































































704603

202101

3

2

1

7655

55433

3321

//

0

//

/1/1/1/10

/1)/1/1/1(/1

0/1/1/1/1

RURU

RURU

U

U

U

RRRR

RRRRR

RRRR

B

B

B

 

To solve such written equations the matrix solution in Matlab is used. 

We form the m-file prudy.m (Fig. 4) 
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Fig. 4. M-file prudy.m for calculation of matrices and currents 

 

After solving the system of equations we get the values of node voltages, 

which are converted to the currents in branches of the circuit. The result of 

solution is launching the script of prudy.m and print of results. 

 

 
 

Another possibility of the problem solution in Matlab is use of Symbolic 

Math Toolbox, which provides functions for solution and graphic description of 

mathematical functions. Tool panel provides libraries of functions in common 

mathematical areas such as mathematical analysis, linear algebra, algebraic and 

common differential equations and so on. Symbolic Math Toolbox uses MuPAD 

language as a part of its calculus core. The language has a extensive set of 

functions, which are optimized to create and operate symbolic arithmetical 

muphlp://quickref.muphlp/glossary.xml#glossary


Application of mathematical software in solving the problems of electricity 

51 

 

expressions. To solve the system of equations linsolve ([eqs], [vars]) function 

was used, where eqs is a list or a set of linear equations or arithmetical 

expressions, vars is a list or a set of unknowns to solve for: typically identifiers 

or indexed identifiers. The solution of the system can be found in Fig. 5, where x 

= I1, y = I2, z = I3, k = I4, l = I5, m = I6, n = I7: 

 

 
Fig. 5. Numeric solution of the system of equations in MuPad 

 

The same values are obtained from the problem solution in Matlab as in 

the case of the problem solution in MS Excel. 

 

 

5 Conclusions 

It accrues from the solution results that solution of the system of equations 

of the physical problem in an analytic way as well as by using mathematical 

software tools leads to certain numeric values. Analytic solution of the system of 

n equations in n variables requires certain mathematical knowledge and skills to 

solve matrices. Use of modern software tools to solve the system of equations 

facilitates the problem solution. On the other side it requires certain computing 

skills. The physical problem being solved points out importance and necessity of 

using modern information and communication technology means and their 

utilization in educational process that makes “learning” for pupils and students 

more interesting and attractive. 

muphlp://datatypes.muphlp/DOM_LIST.xml#DOM_LIST
muphlp://datatypes.muphlp/DOM_SET.xml#DOM_SET
muphlp://quickref.muphlp/glossary.xml#glossary
muphlp://quickref.muphlp/glossary.xml#glossary
muphlp://datatypes.muphlp/DOM_LIST.xml#DOM_LIST
muphlp://datatypes.muphlp/DOM_SET.xml#DOM_SET
muphlp://datatypes.muphlp/DOM_IDENT.xml#DOM_IDENT
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Abstract

In this paper we introduce the smallest equivalence relation ξ∗ on
a finite fuzzy hypergroup S such that the quotient group S/ξ∗, the set
of all equivalence classes, is a solvable group. The characterization of
solvable groups via strongly regular relation is investigated and several
results on the topic are presented.

Key words: Fuzzy hypergroups, strongly regular relation, solv-
able groups, fundamental relation.
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1 Introduction

In mathematics, more specifically in the field of group theory, a solvable
group or soluble group is a group that can be constructed from Abelian
groups using extensions. Equivalently, a solvable group is a group whose
derived series terminates in the trivial subgroup. All Abelian groups are
trivially solvable a subnormal series being given by just the group itself and
the trivial group. But non-Abelian groups may or may not be solvable. A
small example of a solvable, non-nilpotent group is the symmetric group S3.
In fact, as the smallest simple non-Abelian group is A5, (the alternating
group of degree 5) it follows that every group with order less than 60 is
solvable. The study of fuzzy hyperstructures is an interesting research topic
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for fuzzy sets. There are many works on the connections between fuzzy
sets and hyperstructures. This can be considered into three groups. A first
group of papers studies crisp hyperoperations defined through fuzzy sets.
This study was initiated by Corsini in [3, 4] and then continued by other
researchers. A second group of papers concerns the fuzzy hyperalgebras. This
is a direct extension of the concept of fuzzy algebras. This was initiated
by Zahedi in [12]. A third group was introduced by Corsini and Tofan in
[5]. The basic idea in this group of papers is the following: a multioperation
assigns to every pair of elements of S a non-empty subset of S, while a
fuzzy multioperation assigns to every pair of elements of S a nonzero fuzzy
set on S. This idea was continuated by Sen, Ameri and Chowdhury in [10]
where fuzzy semihypergroups are introduced. The fundamental relations are
one of the most important and interesting concepts in fuzzy hyperstructures
that ordinary algebraic structures are derived from fuzzy hyperstructures
by them. Fundamental relation α∗ on fuzzy hypersemigroups is studied in
[1].Also in [8], the smallest strongly regular equivalence relation γ∗ on a fuzzy
hypersemigroup S such that S/γ∗ is a commutative semigroup is studied. In
this paper, we introduce and study the fundamental relation ξ∗ of a finite
fuzzy hypergroup S such that S/ξ∗ is a solvable group. Finally, we introduce
the concept of ξ-part of a fuzzy hypergroup and we determines necessary and
sufficient conditions such that the relation ξ to be transitive.

2 Preliminary

Recall that for a non-empty set S, a fuzzy subset µ of S is a function from
S into the real unite interval [0, 1]. We denote the set of all nonzero fuzzy
subsets of S by F ∗(S). Also for fuzzy subsets µ1 and µ2 of S, then µ1 is smaller
than µ2 and write µ1 ≤ µ2 iff for all x ∈ S, we have µ1(x) ≤ µ2(x). Define
µ1 ∨ µ2 and µ1 ∧ µ2 as follows: ∀x ∈ S, (µ1 ∨ µ2)(x) = max{µ1(x), µ2(x)}
and (µ1 ∧ µ2)(x) = min{µ1(x), µ2(x)}.

A fuzzy hyperoperation on S is a mapping ◦ : S × S 7→ F ∗(S) written as
(a, b) 7→ a ◦ b = ab. The couple (S, ◦) is called a fuzzy hypergropoid.

Definition 2.1. A fuzzy hypergropoid (S, ◦) is called a fuzzy hypersemigroup
if for all a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c), where for any fuzzy subset µ of S

(a ◦ µ)(r) =


∨
t∈S

((a ◦ t)(r) ∧ µ(t)), µ 6= 0

0, µ = 0
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(µ ◦ a)(r) =


∨
t∈S

(µ(t) ∧ (t ◦ a)(r)), µ 6= 0

0, µ = 0

for all r ∈ S.

Definition 2.2. Let µ, ν be two fuzzy subsets of a fuzzy hypergropoid (S, ◦).

Then we define µ ◦ ν by (µ ◦ ν)(t) =
∨
p,q∈S

(µ(p) ∧ (p ◦ q)(t) ∧ ν(q)), for all

t ∈ S.

Definition 2.3. A fuzzy hypersemigroup (S, ◦) is called fuzzy hypergroup if
x ◦ S = S ◦ x = χS, for all x ∈ S, where χS is characteristic function of S.

Example 2.1. Consider a fuzzy hyperoperation ◦ on a non-empty set S by
a ◦ b = χ{a,b}, for all a, b ∈ S. Then (S, ◦) is a fuzzy hypersemigroup and
fuzzy hypergroup as well.

Theorem 2.1. Let (S, ◦) be a fuzzy hypersemigroup. Then χa ◦ χb = a ◦ b,
for all a, b ∈ S.

Definition 2.4. Let ρ be an equivalence relation on a fuzzy hypersemigroup
(S, ◦), we define two relations ρ and ρ on F ∗(S) as follows: for µ, ν ∈ F ∗(S);
µρν if µ(a) > 0 then there exists b ∈ S such that ν(b) > 0 and aρb, also if
ν(x) > 0 then there exists y ∈ S, such that µ(y) > 0 and xρy. µρν if for all
x ∈ S such that µ(x) > 0 and for all y ∈ S such that ν(y) > 0 , xρy.

Definition 2.5. An equivalence relation ρ on a fuzzy hypersemigroup (S, ◦) is
said to be (strongly) fuzzy regular if aρb, a′ρb′ implies a◦a′ ρ b◦b′(a◦a′ ρ b◦b′).

If ρ is a equivalence relation on a fuzzy hypersemigroup (S, ◦), then we
consider the following hyperoperation on the quotient set S/ρ as follows:

for every aρ, bρ ∈ S/ρ

aρ⊕ bρ = {cρ : (a′ ◦ b′)(c) > 0, aρa′, bρb′}

Theorem 2.2. [2] Let (S, ◦) be a fuzzy hypersemigroup and ρ be an equiva-
lence relation on S. Then

(i) the relation ρ is fuzzy regular on (S, ◦) iff (S/ρ,⊕) is a hypersemigroup.

(ii) the relation ρ is strongly fuzzy regular on (S, ◦) iff (S/ρ,⊕) is a semi-
group.
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3 New strongly regular relation ξ∗n

Now in this paper we introduce and analyze a new strongly regular re-
lation ξ∗n on a fuzzy hypergroup S such that the quotient group S/ξ∗n is
solvable.

Definition 3.1. Let (S, o) be a fuzzy hypergroup. We define
1) L0(S) = S
2) Lk+1(S) = {t ∈ S | (xy)(r) > 0, (tyx)(r) > 0, in which x, y ∈
Lk(S), for some r ∈ S}.
for all k ≥ 0. Suppose that n ∈ N and ξn = ∪m≥1ξm,n, where ξ1,n is the
diagonal relation and for every integer m > 1, ξm,n is the relation defined as
follows:
aξm,nb ⇐⇒ ∃x1, ..., xm ∈ H(m ∈ N),∃σ ∈ Sm : σ(i) = i, if zi 6∈ Ln(H) :
(x1o...oxm)(a) > 0 and (xσ1o...oxσm)(b) > 0.

It is clear that ξn is symmetric. Define for any a ∈ S, a(a) = (χa)(a) = 1,
thus ξn is reflexive. We take ξ∗n to be transitive closure of ξn. Then it is an
equivalence relation on H.

Corolary 3.1. For every n ∈ N, we have α∗ ⊆ ξ∗n ⊆ γ∗.

Theorem 3.1. For every n ∈ N, the relation ξ∗n is a strongly regular relation.

Proof. Suppose n ∈ N. Clearly, ξm,n is an equivalence relation. First
we show that for each x, y, z ∈ S

xξny ⇒ xzξnyz, zxξnzy (∗).

If xξny, then there exists m ∈ N such that xξm,ny, and so there exist

(z1, . . . , zm) ∈ Sm and σ ∈ Sm such that if zi 6∈ Ln(S) then
m∏
i=1

zi(x) >

0,
m∏
i=1

zσ(i)(y) > 0. Let z ∈ S, for any r, s such that (xz)(r) > 0 and

(yz)(s) > 0. We have ((
∏m

i=1 zi)z)(r) =
∨
p{(

m∏
i=1

zi)(p)∧ (pz)(r)}. Let p = x,

then ((
m∏
i=1

zi)(z))r > 0, σ(i) = i, if zi 6∈ Ln(S), ((
m∏
i=1

zσ(i))(z))(s) =

∨
q

{(
m∏
i=1

zσ(i))(q) ∧ (qz)(s)}. Let q = y, then ((
m∏
i=1

zσ(i))(z))(s) > 0, and

σ(i) = i, if zi 6∈ Ln(S). Now suppose that zm+1 = z and we define
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σ
′ ∈ Sm + 1: σ

′
(i) =

{
σ(i), ∀i ∈ {1, 2, . . . ,m}
m+ 1, i = m+ 1.

Thus for all r, s ∈ S;

(
m∏
i=1

zi)(r) > 0, (
m∏
i=1

z
′

σ)(s) > 0; σ
′
(i) = i if zi 6∈ Ln(S). Therefore xzξnyz.

Now if xξ∗ny, then there exists k ∈ N and u0 = x, u1, . . . , uk = y ∈ S
such that u0 = xξnu1ξnu2ξn . . . ξnum = y, by the above result we have

u0z = xzξnu1zξnu2zξn . . . ξnukz = yz and so xzξnyz. Similarly we can show

that zxξnzy. Therefore ξ∗n is a strongly regular relation on S. 2

Proposition 3.1. For every n ∈ N, we have ξ∗n+1 ⊆ ξ∗n.

Proof. Let xξn+1y so ∃(z1, ..., zm) ∈ Sm;∃δ ∈ Sm : δ(i) = i if zi 6∈

Ln+1(S), such that (
m∏
i=1

zi)(x) > 0, (
m∏
i=1

zδ(i))(y) > 0. Now let δ1 = δ, since

Ln+1(S) ⊆ Ln(S) so xξny.2

The next result immediately follows from previous theorem.

Corolary 3.2. If S is a commutative hypergroup, then β∗ = ξ∗n.

A group G is solvable if and only if G(n) = {e} for some n ≥ 1 in
which, G(0) = G, G(1) = G

′
, commutator subgroup of G, and inductively

G(i) = (G(i−1))
′
.

Theorem 3.2. If S is a fuzzy hypergroup and ϕ is a strongly regular relation
on S, then

Lk+1(S/ϕ)) = 〈t | t ∈ Lk(S)〉
for k ∈ N.

Proof. Suppose that G = S/ϕ and x = ϕ(x) for all x ∈ S. We prove the
theorem by induction on k. For k = 0 we have L1(G) = 〈t | t ∈ L0(S)〉. Now
suppose that a = t where t ∈ Lk+1(S) so there exist r1 ∈ S ; (xy)(r1) > 0,
(tyx)(r1) > 0 in which x, y ∈ Lk(S). Then xy = z1; (xy)(z1) > 0 and so
xy = r1. Also tyx = z2; (tyx)(z2) > 0 and tyx = r1 = xy which implies
that t = [x, y]. By hypotheses of induction we conclude that t ∈ Lk+1(G).
Hence a = [t, s] ∈ Lk+2(G). Conversely, let a ∈ Lk+2(G). Then a = [x, y],
where x, y ∈ Lk+1(G), so by hypotheses of induction we have x = u and
y = v, where u, v ∈ Lk(S). Let c ∈ S; (uv)(c) > 0 we show that there
exists t ∈ S such that (tvu)(c) > 0. Since S ◦ u = χS and c ∈ S then there
exists r ∈ S such that (ru)(c) > 0 and so by r ∈ S = S ◦ v there exist t ∈ S;
(tv)(r) > 0. Therefore (tvu)(c) =

∨
n((tv)(n)∧(nu)(c)) ≥ (tv)(r)∧(ru)(c) >

0. Thus (uv)(c) > 0, (tvu)(c) > 0 which implies that t ∈ Lk+1(S). Now since
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uv = c = tvu, then t = [u, v] = [x, y] = a and t ∈ Lk+1(S). Therefore,
a = t ∈ 〈t; t ∈ Lk+1(S)〉.2

Theorem 3.3. S/ξ∗n is a solvable group of class at most n+ 1.

Proof. Using Theorem 3.2, Lk(S/ξ
∗
n)is an Abelian group and Lk+1(S/ξ

∗
n) =

{e}. 2

4 On solvable groups derived from finite fuzzy

hypergroups

In this section we introduce the smallest strongly relation ξ∗ on a finite
fuzzy hypergroup S such that H/ξ∗ is a solvable group.

Definition 4.1. Let S be a finite fuzzy hypergroup. Then we define the
relation ξ∗ on S by

ξ∗ =
⋂
n≥1

ξ∗n.

Theorem 4.1. The relation ξ∗ is a strongly regular relation on a finite fuzzy
hypergroup S such that S/ξ∗ is a solvable group.

Proof. Since ξ∗ =
⋂
n≥1 ξ

∗
n, it is easy to see that ξ∗ is a strongly regular

relation on S. By using Proposition 3.1, we conclude that there exists k ∈ N
such that ξ∗k+1 = ξ∗k. Thus ξ∗ = ξ∗k for some k ∈ N. 2

Theorem 4.2. The relation ξ∗ is the smallest strongly regular relation on a
finite fuzzy hypergroup S such that S/ξ∗ is a solvable group.

Proof. Suppose ρ is a strongly regular relation on S such that K = S/ρ
is a solvable group of class c. Suppose that xξy. Then xξny, for some n ∈ N
and so there exists m ∈ N such that

xξmny ⇐⇒ ∃(z1, ..zm) ∈ Sm,∃δ ∈ Sm : δ(i) = i if zi 6∈ Ln(S) such that
(
∏m

i=1 zi)(x) > 0, (
∏m

i=1 zδ(i))(y) > 0,

Lc+1(S/ρ) = 〈ρ(t); t ∈ Lc(S)〉 = {ρ(e)},

and so ρ(zi) = ρ(e), for every zi ∈ Lc(S). Therefore ρ(x) = ρ(y), which
implies that xρy.2
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5 Transitivity of ξ∗

In this section we introduce the concept of ξ-part of a fuzzy hypergroup
and we determine necessary and sufficient condition such that the relation ξ
to be transitive.

Definition 5.1. Let X be a non-empty subset of S. Then we say that X is a
ξ-part of S if the following condition holds: for every k ∈ N and (z1, ..., zm) ∈
Hm and for every σ ∈ Sk such that σ(i) = i if zi 6∈ ∪n≥1Ln(S), and there

exists x ∈ X such that (
m∏
i=1

zi)(x) > 0, then for all y ∈ S\X, (
m∏
i=1

zσ(i))(y) =

0.

Theorem 5.1. Let X be a non-empty subset of a fuzzy hypergroup S. Then
the following conditions are equivalent:
1) X is a ξ-part of S,
2) x ∈ X, xξy =⇒ y ∈ X,
3) x ∈ X, xξ∗y =⇒ y ∈ X.

Proof. (1) =⇒ (2) if (x, y) ∈ S2 is a pair such that x ∈ X and xξy, then

there exist (z1, ..., zi) ∈ Sk; (
m∏
i=1

zi)(x) > 0, (
m∏
i=1

zσ(i))(y) > 0 and σ(i) = i if

zi 6∈ ∪n≥1Ln(S). Since X is a ξ-part of S, we have y ∈ X.
(2) =⇒ (3) Suppose that (x, y) ∈ S2 is a part such that x ∈ X and xξ∗y.
Then there is (z1, ..., zi) ∈ Sk such that x = z0ξz1ξ...ξzk = y. Now by using
(2) k-times we obtain y ∈ X.
(3) =⇒ (1) For every k ∈ N and (z1, ..., zi) ∈ Sk and for every σ ∈ Sk such

that σ(i) = i if zi 6∈ ∪n≥1Ln(S), then there exists x ∈ X; (
m∏
i=1

zi)(x) > 0 and

there exist y ∈ S\X ; (
∏

i=1 zσ(i))(y) > 0, then xξny and so xξy. Therefore
by (3) we have y ∈ X which is a contradiction.2

Theorem 5.2. The following conditions are equivalent:
1) for every a ∈ H, ξ(a) is a ξ-part of S,
2) ξ is transitive.

Proof. (1) =⇒ (2) Suppose that xξ∗y. Then there is (z1, ..., zi) ∈ Sk

such that x = z0ξz1ξ...ξzk = y, since ξ(zi) for all 0 ≤ i ≤ k, is a ξ-part, we
have zi ∈ ξ(zi−1), for all 1 ≤ i ≤ k. Thus y ∈ ξ(x), which means that xξy.
(2) =⇒ (1) Suppose that x ∈ S, z ∈ ξ(x) and zξy. By transitivity of ξ, we
have y ∈ ξ(x). Now according to the last theorem, ξ(x) is a ξ-part of S.2
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Definition 5.2. The intersection of all ξ-parts which contain A is called
ξ-closure of A in S and it will be denoted by K(A).

In what follows, we determine the set W (A), where A is a non-empty
subset of S. We set
1) W1(A) = A and

2) Wn+1(A) = {x ∈ S | ∃(z1, ..., zi) ∈ Sk : (
m∏
i=1

z(i))(x) > 0, ∃σ ∈ Sk such

that σ(i) = i, if zi 6∈ ∪n≥1Ln(S) and there exists a ∈ Wn(A); (
m∏
i=1

zσ(i))(a) >

0}.
We denote W (A) =

⋃
n≥1Wn(A).

Theorem 5.3. For any non-empty subset of S, the following statements
hold:
1) W (A) = K(A),
2) K(A) = ∪a∈AK(a).

Proof. 1) It is enough to prove:
a) W (A) i a ξ-part,
b) if A ⊆ B and B is a ξ-part, then W (A) ⊆ B.
In order to prove (a), suppose that a ∈ W (A) such that (

∏
i=1 zi)(a) > 0

and σ ∈ Sk such that σ(i) = i, if zi 6∈ ∪n≥1Ln(S). Therefore, there exists

n ∈ N such that (
m∏
i=1

zi)(a) > 0 a ∈ Wn(A). Now if there exists t ∈ S such

that (
∏

i=1 zσ(i))(t) > 0 we obtain t ∈ Wn+1(A). Therefore, t ∈ W (A) which

is a contradiction. Thus (
m∏
i=1

zσ(i))(t) = 0 and so W (A) is a ξ-part. Now

we prove (b) by induction on n. We have W1(A) = A ⊆ B. Suppose that
Wn(A) ⊆ B. We prove that Wn+1(A) ⊆ B. If z ∈ Wn+1(A), then there

exists k ∈ N; (z1, ..., zk) ∈ Sk; (
m∏
i=1

zi)(z) > 0 and there exists σ ∈ Sk such

that σ(i) = i,if zi 6∈ ∪t≥1Lt(S) and there exists t ∈ Wn(A) ; (
m∏
i=1

zσi)(t) > 0,

since Wn(A) ⊆ B we have t ∈ B and (
m∏
i=1

zσi)(t) > 0. Now since B is ξ-part

, (
m∏
i=1

zi)(z) > 0 then z ∈ B.
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2) It is clear that for all a ∈ A, K(a) ⊆ K(A). By part 1), we have K(A) =
∪n≥1Wn(A) and W1(A) = A = ∪a∈A{a}. It is enough to prove that Wn(A) =
∪a∈AWn(a), for all n ∈ N. We follow by induction on n. Suppose it is
true for n. We prove that Wn+1(A) = ∪a∈AWn+1(a). If z ∈ Wn+1(A),

then there exists k ∈ N, (z1, ..., zk) ∈ Sk; (
m∏
i=1

zi)z > 0 and there exists

σ ∈ Sk such that σ(i) = i, if zi 6∈ ∪t≥1Lt(S) and there exist a ∈ Wn(A);

(
m∏
i=1

zσ(i))(a) > 0. By the hypotheses of induction there exists a ∈ Wn(A) =

∪b∈AWn(b); (
m∏
i=1

zσ(i))(a
′
) > 0 for some a

′ ∈ Wn(b) in which b ∈ A. Therefore,

z ∈ Wn+1(b), and so Wn+1(A) ⊆ ∪b∈AWn+1(b). Hence K(A) = ∪a∈AK(a).2

Theorem 5.4. The following relation is equivalence relation on H.

xWy ⇐⇒ x ∈ W (y),

for every (x, y) ∈ S2, where W (y) = W ({y}).

Proof. It is easy to see that W is reflexive and transitive. We prove that
W is symmetric. To this, we check that:
1) for all n ≥ 2 and x ∈ S, Wn(W2(x)) = Wn+1(x),
2) x ∈ Wn(y) if and only if y ∈ Wn(x).
We prove (1) by induction on n.

W2(W2(x)) = {z | ∃q ∈ N, (a1, ..., aq) ∈ Sq; (
∏

i=1 ai)(z) > 0 and ∃σ ∈

Sk such that σ(i) = i, if zi 6∈ ∪s≥1Ls(S) and ∃y ∈ W2(x); (
m∏
i=1

aσ(i))(y) >

0} = W3(x). Now we proceed by induction on n. Suppose Wn(W2(x)) =
Wn+1(x) then

Wn+1(W2(x)) = {z | ∃q ∈ N, (a1, ..., aq) ∈ Sq; (
m∏
i=1

ai)(z) > 0 and ∃σ ∈

Sk such that σ(i) = i, if zi 6∈ ∪s≥1Ls(S) and ∃t ∈ Wn(W2(x)); (
∏
i=1

aσ(i))(t)

> 0} = Wn+2(x). Now we prove (2) by induction on n, too. It is clear
that x ∈ W2(y) if and only if y ∈ W2(x). Suppose x ∈ Wn(y) if and only
if y ∈ Wn(x). Let x ∈ Wn+1(y), then there exists q ∈ N, (a1, ..., aq) ∈

Sq; (
m∏
i=1

ai)(x) > 0 and ∃σ ∈ Sk such that σ(i) = i, if ai 6∈
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∪s≥1Ls(S) and ∃t ∈ Wn(y); (
m∏
i=1

aσ(i))t > 0. Now, (
m∏
i=1

ai)(x) > 0, x ∈ W1(x)

and (
m∏
i=1

aσ(i))(t) > 0 implies that t ∈ W2(x). Since t ∈ Wn(y), then by

hypotheses of induction y ∈ Wn(t) and we see that t ∈ W2(x), therefore
y ∈ Wn(W2(x)) = Wn+1(x). 2

Remark 5.1. If S is a fuzzy hypergroup, then S/ξ∗ is a group. We define
ωS = φ−1(1S/ξ∗), in which φ : S → S/ξ∗ is the canonical projection.

Lemma 5.1. If S is a fuzzy hypergroup and M is a non-empty subset of S,
then

(i) φ−1(φ(M)) = {x ∈ S : (ωSM)(x) > 0} = {x ∈ S : (MωS)(x) > 0}
(ii) If M is a ξ part of S, then φ−1(φ(M)) = M .

Proof. (i) Let x ∈ S and (t, y) ∈ ωS × M such that (ty)(x) > 0,
so φ(x) = φ(t) ⊕ φ(y) = 1S/ξ∗ ⊕ φ(y) = φ(y), therefore x ∈ φ−1(φ(y)) ⊂
φ−1(φ(M)). Conversely, for every x ∈ φ−1(φ(M)), there exists b ∈ M such
that φ(x) = φ(b). By reproducibility, a ∈ S exists such that (ab)(x) > 0, so
φ(b) = φ(x) = φ(a) ⊕ φ(b). This implies φ(a) = 1S/ξ∗ and a ∈ φ−1(1S/ξ∗) =
ωS. Therefore (ωSM)(x) > 0.

In the same way, we can prove that φ−1(φ(M)) = {x ∈ S : (MωS)(x) >
0}.
(ii) We know M ⊆ φ−1(φ(M)). If x ∈ φ−1(φ(M)), then there exists b ∈ M
such that φ(x) = φ(b). Therefore x ∈ ξ∗(x) = ξ∗(b). Since M is a ξ part of
S and b ∈M , by Lemma 5.1, we conclude ξ∗(b) ⊆M and x ∈M . 2

Definition 5.3. Let (S, ·) be a fuzzy hypergroup. K ⊆ S is called a fuzzy
subhypergroup of S if
i) (a · b) · c = a · (b · c), for all a, b, c ∈ S
ii) a ·K = χK, for all a ∈ K.

Theorem 5.5. ωS is a fuzzy subhypergroup of S, which is also a ξ-part of
S.

Proof. Clearly, ωS ⊆ S and so (a·b)·c = a·(b·c), for all a, b, c ∈ ωS. Now
we show that ωSy = χωS

for all y ∈ ωS. Let x, y ∈ ωS, then there exists u ∈ S
such that (uy)(x) > 0. Therefore, uy = x, which implies that u = 1. Thus
u ∈ ωS. Consequently, ωSy = χωS

. Hence, ωS is a fuzzy subhypergroup of S.
Now we prove that K(y) = φ−1(φ({y})) = {x ∈ S : (ωSy)(x) > 0} = ωS.
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z ∈ φ−1(φ({y})) ⇐⇒ ϕ(z) = ϕ(y)

⇐⇒ ξ∗(z) = ξ∗(y)

⇐⇒ zξ∗y

⇐⇒ z ∈ ξ∗(z) = ω({y}) = K(y).

Also since y ∈ ωS, then {x ∈ S : (ωSy)(x) > 0} = {x ∈ S : (χωS
)(x) >

0} = ωS. Therefore K(y) = ωS and so ωS is ξ part. 2
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Abstract

In this paper, we introduce the notion of (implicative) neutrosophic filters
in BE-algebras. The relation between implicative neutrosophic filters and
neutrosophic filters is investigated and we show that in self distributive BE-
algebras these notions are equivalent.

Keywords: BE-algebra, neutrosophic set, (implicative) neutrosophic filter.
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1 Introduction
Neutrosophic set theory was introduced by Smarandache in 1998 ([10]). Neu-

trosophic sets are a new mathematical tool for dealing with uncertainties which
are free from many difficulties that have troubled the usual theoretical approaches.
Research works on neutrosophic set theory for many applications such as infor-
mation fussion, probability theory, control theory, decision making, measurement
theory, etc. Kandasamy and Smarandache introduced the concept of neutrosophic
algebraic structures ([3, 4, 5]). Since then many researchers worked in this area
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and lots of literatures had been produced about the theory of neutrosophic set. In
the neutrosophic set one can have elements which have paraconsistent information
(sum of components > 1), others incomplete information (sum of components
< 1), others consistent information (in the case when the sum of components =1)
and others interval-valued components (with no restriction on their superior or
inferior sums).

H.S. Kim and Y.H. Kim introduced the notion of a BE-algebra as a generaliza-
tion of a dual BCK-algebra ([6]). B.L. Meng give a procedure which generated a
filter by a subset in a transitive BE-algebra ([7]). A. Walendziak introduced the no-
tion of a normal filter in BE-algebras and showed that there is a bijection between
congruence relations and filters in commutative BE-algebras ([11]). A. Borumand
Saeid and et al. defined some types of filters in BE-algebras and showed the re-
lationship between them ([1]). A. Rezaei and et al. discussed on the relationship
between BE-algebras and Hilbert algebras ([9]). Recently, A. Rezaei and et al.
introduced the notion of hesitant fuzzy (implicative) filters and get some results
on BE-algebras ([8]).

In this paper, we introduce the notion of (implicative) neutrosophic filters and
study it in details. In fact, we show that in self distributive BE-algebras concepts
of implicative neutrosophic filter and neutrosophic filter are equivalent.

2 Preliminaries
In this section, we cite the fundamental definitions that will be used in the

sequel:

Definition 2.1. [6] By a BE-algebra we shall mean an algebra X = (X; ∗, 1) of
type (2, 0) satisfying the following axioms:

(BE1) x ∗ x = 1,

(BE2) x ∗ 1 = 1,

(BE3) 1 ∗ x = x,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

From now on, X is a BE-algebra, unless otherwise is stated. We introduce a
relation “≤” on X by x ≤ y if and only if x ∗ y = 1. A BE-algebra X is said to be
self distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X . A BE-algebra
X is said to be commutative if satisfies:

(x ∗ y) ∗ y = (y ∗ x) ∗ x, for all x, y ∈ X .
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Proposition 2.1. [11] If X is a commutative BE-algebra, then for all x, y ∈ X ,

x ∗ y = 1 and y ∗ x = 1 imply x = y.

We note that “≤” is reflexive by (BE1). If X is self distributive then relation “≤”
is a transitive ordered set on X , because if x ≤ y and y ≤ z, then

x ∗ z = 1 ∗ (x ∗ z) = (x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) = x ∗ 1 = 1.

Hence x ≤ z. If X is commutative then by Proposition 2.1, relation “≤” is anti-
symmetric. Hence if X is a commutative self distributive BE-algebra, then relation
“≤” is a partial ordered set on X.

Proposition 2.2. [6] In a BE-algebra X, the following hold:

(i) x ∗ (y ∗ x) = 1,

(ii) y ∗ ((y ∗ x) ∗ x) = 1, for all x, y ∈ X.

A subset F of X is called a filter of X if it satisfies: (F1) 1 ∈ F, (F2) x ∈ F
and x ∗ y ∈ F imply y ∈ F . Define

A(x, y) = {z ∈ X : x ∗ (y ∗ z) = 1},

which is called an upper set of x and y. It is easy to see that 1, x, y ∈ A(x, y), for
any x, y ∈ X. Every upper set A(x, y) need not be a filter of X in general.

Definition 2.2. [1] A non-empty subset F of X is called an implicative filter if
satisfies the following conditions:

(IF1) 1 ∈ F ,

(IF2) x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F imply that x ∗ z ∈ F , for all x, y, z ∈ X.

If we replace x of the condition (IF2) by the element 1, then it can be easily
observed that every implicative filter is a filter. However, every filter is not an
implicative filter as shown in the following example.

Example 2.1. Let X = {1, a, b} be a BE-algebra with the following table:

∗ 1 a b
1 1 a b
a 1 1 a
b 1 a 1

Then F = {1, a} is a filter of X , but it is not an implicative filter, since
1 ∗ (a ∗ b) = 1 ∗ a = a ∈ F and 1 ∗ a = a ∈ F but 1 ∗ b = b /∈ F .
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Definition 2.3. [10] Let X be a set. A neutrosophic subset A of X is a triple
(TA, IA, FA) where TA : X → [0, 1] is the membership function, IA : X → [0, 1]
is the indeterminacy function and FA : X → [0, 1] is the nonmembership function.
Here for each x ∈ X , TA(x), IA(x) and FA(x) are all standard real numbers in
[0, 1].

We note that 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3, for all x ∈ X. The set of
neutrosophic subset of X is denoted by NS(X).

Definition 2.4. [10] Let A and B be two neutrosophic sets on X . Define A ≤ B
if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x), for all x ∈ X.

Definition 2.5. Let X1 = (X1; ∗, 1) and X2 = (X2; ◦, 1′) be two BE-algebras.
Then a mapping f : X1 → X2 is called a homomorphism if, for all x1, x2 ∈ X1

f(x1 ∗ x2) = f(x1) ◦ f(x2). It is clear that if f : X1 → X2 is a homomorphism,
then f(1) = 1′.

3 Neutrosophic Filters
Definition 3.1. A neutrosophic set A of X is called a neutrosophic filter if satisfies
the following conditions:

(NF1) TA(x) ≤ TA(1), IA(x) ≥ IA(1) and FA(x) ≥ FA(1),

(NF2) min{TA(x ∗ y), TA(x)} ≤ TA(y), min{IA(x ∗ y), IA(x)} ≥ IA(y) and
min{FA(x ∗ y), FA(x)} ≥ FA(y), for all x, y ∈ X .

The set of neutrosophic filter of X is denoted by NF(X).

Example 3.1. In Example 2.1, put TA(1) = 0.9, TA(a) = TA(b) = 0.5,
IA(1) = 0.2, IA(a) = IA(b) = 0.35 and FA(1) = 0.1, FA(a) = FA(b) = 0.
Then A = (TA, IA, FA) is a neutrosophic filter.

Proposition 3.1. Let A ∈ NF(X). Then

(i) if x ≤ y, then TA(x) ≤ TA(y), IA(x) ≥ IA(y) and FA(x) ≥ FA(y),
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(ii) TA(x) ≤ TA(y ∗ x), IA(x) ≥ IA(y ∗ x) and FA(x) ≥ FA(y ∗ x),

(iii) min{TA(x), TA(y)} ≤ TA(x ∗ y), min{IA(x), IA(y)} ≥ IA(x ∗ y) and
min{FA(x), FA(y)} ≥ FA(x ∗ y),

(iv) TA(x) ≤ TA((x∗y)∗y), IA(x) ≥ IA((x∗y)∗y) and FA(x) ≥ FA((x∗y)∗y),

(v) min{TA(x), TA(y)} ≤ TA((x ∗ (y ∗ z)) ∗ z),
min{IA(x), IA(y)} ≥ IA((x ∗ (y ∗ z)) ∗ z) and
min{FA(x), FA(y)} ≥ FA((x ∗ (y ∗ z)) ∗ z),

(vi) if min{TA(y), TA((x ∗ y) ∗ z)} ≤ TA(z ∗ x), then TA is order reversing and
IA, FA are order (i.e. if x ≤ y, then TA(y) ≤ TA(x), IA(y) ≥ IA(x) and
FA(y) ≥ FA(x))

(vii) if z ∈ A(x, y), then min{TA(x), TA(y)} ≤ TA(z),
min{IA(x), IA(y)} ≥ IA(z) and min{FA(x), FA(y)} ≥ FA(z)

(viii) if
n∏

i=1

ai ∗ x = 1, then
n∧

i=1

TA(ai) ≤ TA(x),
n∧

i=1

IA(ai) ≥ IA(x) and

n∧
i=1

FA(ai) ≥ FA(x) where
n∏

i=1

ai ∗ x = an ∗ (an−1 ∗ (. . . (a1 ∗ x) . . . )).

Proof. (i). Let x ≤ y. Then x ∗ y = 1 and so

TA(x) = min{TA(x), TA(1)} = min{TA(x), TA(x ∗ y)} ≤ TA(y),

IA(x) = min{IA(x), IA(1)} = min{IA(x), IA(x ∗ y)} ≥ IA(y),

FA(x) = min{FA(x), FA(1)} = min{FA(x), FA(x ∗ y)} ≥ FA(y).

(ii). Since x ≤ y ∗ x, by using (i) the proof is clear.
(iii). By using (ii) we have

min{TA(x), TA(y)} ≤ TA(y) ≤ TA(x ∗ y),

min{IA(x), IA(y)} ≥ IA(y) ≥ IA(x ∗ y),
min{FA(x), FA(y)} ≥ FA(y) ≥ FA(x ∗ y).

(iv). It follows from Definition 3.1,

TA(x) = min{TA(x), TA(1)}
= min{TA(x), TA((x ∗ y) ∗ (x ∗ y))}
= min{TA(x), TA(x ∗ ((x ∗ y) ∗ y))}
≤ TA((x ∗ y) ∗ y).
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Also, we have

IA(x) = min{IA(x), IA(1)}
= min{IA(x), IA((x ∗ y) ∗ (x ∗ y))}
= min{IA(x), IA(x ∗ ((x ∗ y) ∗ y))}
≥ IA((x ∗ y) ∗ y)

and

FA(x) = min{FA(x), FA(1)}
= min{FA(x), FA((x ∗ y) ∗ (x ∗ y))}
= min{FA(x), FA(x ∗ ((x ∗ y) ∗ y))}
≥ FA((x ∗ y) ∗ y).

(v). From (iv) we have

min{TA(x), TA(y)} ≤ min{TA(x), TA((y ∗ (x ∗ z)) ∗ (x ∗ z))}
= min{TA(x), TA((x ∗ (y ∗ z)) ∗ (x ∗ z))}
= min{TA(x), TA(x ∗ (x ∗ (y ∗ z)) ∗ z))}
≤ TA((x ∗ (y ∗ z)) ∗ z)),

min{IA(x), IA(y)} ≥ min{IA(x), IA((y ∗ (x ∗ z)) ∗ (x ∗ z))}
= min{IA(x), IA((x ∗ (y ∗ z)) ∗ (x ∗ z))}
= min{IA(x), IA(x ∗ (x ∗ (y ∗ z)) ∗ z))}
≥ IA((x ∗ (y ∗ z)) ∗ z))

and

min{FA(x), FA(y)} ≥ min{FA(x), FA((y ∗ (x ∗ z)) ∗ (x ∗ z))}
= min{FA(x), FA((x ∗ (y ∗ z)) ∗ (x ∗ z))}
= min{FA(x), FA(x ∗ (x ∗ (y ∗ z)) ∗ z))}
≥ FA((x ∗ (y ∗ z)) ∗ z)).

(vi). Let x ≤ y, that is, x ∗ y = 1.

TA(y) = min{TA(y), TA(1∗1)} = min{TA(y), TA((x∗y)∗1)} ≤ TA(1∗x) = TA(x),

IA(y) = min{IA(y), IA(1∗1)} = min{IA(y), IA((x∗y)∗1)} ≥ IA(1∗x) = IA(x),

70



Neutrosophic filters in BE-algebras

FA(y) = min{FA(y), FA(1 ∗ 1)} = min{FA(y), FA((x ∗ y) ∗ 1)} ≥ FA(1 ∗ x) =

FA(x).

(vii). Let z ∈ A(x, y). Then x ∗ (y ∗ z) = 1. Hence

min{TA(x), TA(y)} = min{TA(x), TA(y), TA(1)}
= min{TA(x), TA(y), TA(x ∗ (y ∗ z))}
≤ min{TA(y), TA(y ∗ z)}
≤ TA(z).

Also, we have

min{IA(x), IA(y)} = min{IA(x), IA(y), IA(1)}
= min{IA(x), IA(y), IA(x ∗ (y ∗ z))}
≥ min{IA(y), IA(y ∗ z)}
≥ IA(z),

and

min{FA(x), FA(y)} = min{FA(x), FA(y), FA(1)}
= min{FA(x), FA(y), FA(x ∗ (y ∗ z))}
≥ min{FA(y), FA(y ∗ z)}
≥ FA(z).

(viii). The proof is by induction on n. By (vii) it is true for n = 1, 2. Assume
that it satisfies for n = k, that is,
k∏

i=1

ai∗x = 1⇒
k∧

i=1

TA(ai) ≤ TA(x),
k∧

i=1

IA(ai) ≥ IA(x) and
k∧

i=1

FA(ai) ≥ FA(x)

for all a1, . . . , ak, x ∈ X.

Suppose that
k+1∏
i=1

ai ∗ x = 1, for all a1, . . . , ak, ak+1, x ∈ X. Then

k+1∧
i=2

TA(ai) ≤ TA(a1 ∗ x),
k+1∧
i=2

IA(ai) ≥ IA(a1 ∗ x), and
k+1∧
i=2

FA(ai) ≥ FA(a1 ∗ x).

Since A is a neutrosophic filter of X, we have

k+1∧
i=1

TA(ai) = min{(
k+1∧
i=2

TA(ai)), TA(a1)} ≤ min{TA(a1 ∗ x), TA(a1)} ≤ TA(x),
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k+1∧
i=1

IA(ai) = min{(
k+1∧
i=2

IA(ai)), IA(a1)} ≥ min{IA(a1 ∗ x), IA(a1)} ≥ IA(x)

and

k+1∧
i=1

FA(ai) = min{(
k+1∧
i=2

FA(ai)), FA(a1)} ≥ min{FA(a1 ∗ x), FA(a1)} ≥ FA(x).

2

Theorem 3.1. If {Ai}i∈I is a family of neutrosophic filters in X, then
⋂
i∈I

Ai is too.

Theorem 3.2. Let A ∈ NF(X). Then the sets

(i) XTA
= {x ∈ X : TA(x) = TA(1)},

(ii) XIA = {x ∈ X : IA(x) = IA(1)},

(iii) XFA
= {x ∈ X : FA(x) = FA(1)},

are filters of X.

Proof. (i). Obviously, 1 ∈ XhA
. Let x, x ∗ y ∈ XTA

. Then
TA(x) = TA(x ∗ y) = TA(1). Now, by (NF1) and (NF2), we have

TA(1) = min{TA(x), TA(x ∗ y)} ≤ TA(y) ≤ TA(1).

Hence TA(y) = TA(1). Therefore, y ∈ XTA
.

The proofs of (ii) and (iii) are similar to (i).2

Definition 3.2. A neutrosophic set A of X is called an implicative neutrosophic
filter of X if satisfies the following conditions:

(INF1) TA(1) ≥ TA(x),

(INF2) TA(x ∗ z) ≥ min{TA(x ∗ (y ∗ z)), TA(x ∗ y)},
IA(x ∗ z) ≤ min{IA(x ∗ (y ∗ z)), IA(x ∗ y)} and
FA(x ∗ z) ≤ min{FA(x ∗ (y ∗ z)), FA(x ∗ y)}, for all x, y, z ∈ X .
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The set of implicative neutrosophic filter of X is denoted by INF(X). If we
replace x of the condition (INF2) by the element 1, then it can be easily observed
that every implicative neutrosophic filter is a neutrosophic filter. However, ev-
ery neutrosophic filter is not an implicative neutrosophic filter as shown in the
following example.

Example 3.2. Let X = {1, a, b, c, d} be a BE-algebra with the following table:

∗ 1 a b c d
1 1 a b c d
a 1 1 b c b
b 1 a 1 b a
c 1 a 1 1 a
d 1 1 1 b 1

Then X = (X; ∗, 1) is a BE-algebra. Define a neutrosophic set A on X as
follows:

TA(x) =

{
0.85 if x = 1, a
0.12 otherwise

and IA(x) = FA(x) = 0.5, for all x ∈ X .
Then clearly A = (TA, IA, FA) is a neutrosophic filter of X, but it is not an

implicative neutrosophic filter of X, since

TA(b ∗ c) 6≥ min{TA(b ∗ (d ∗ c)), TA(b ∗ d)}.

Theorem 3.3. Let X be a self distributive BE-algebra. Then every neutrosophic
filter is an implicative neutrosophic filter.

Proof. Let A ∈ NF(X) and x ∈ X . Obvious that TA(x) ≤ TA(1), IA(x) ≥
IA(1) and FA(x) ≥ FA(1). By self distributivity and (NF2), we have

min{TA(x∗(y∗z)), TA(x∗y)} = min{TA((x∗y)∗(x∗z)), TA(x∗y)} ≤ TA(x∗z),

min{IA(x∗(y∗z)), IA(x∗y)} = min{IA((x∗y)∗(x∗z)), IA(x∗y)} ≥ IA(x∗z)

and

min{FA(x∗(y∗z)), FA(x∗y)} = min{FA((x∗y)∗(x∗z)), FA(x∗y)} ≥ FA(x∗z).

Therefore A ∈ INF(X).2
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Let t ∈ [0, 1]. For a neutrosophic filter A of X, t-level subset which denoted
by U(A; t) is defined as follows:

U(A; t) := {x ∈ A : t ≤ TA(x), IA(x) ≤ t and FA(x) ≤ t}

and strong t-level subset which denoted by U(A; t)> as

U(A; t)> := {x ∈ A : t < TA(x), IA(x) < t and FA(x) < t}.

Theorem 3.4. Let A ∈ NS(X). The following are equivalent:

(i) A ∈ NF(X),

(ii) (∀t ∈ [0, 1]) U(A; t) 6= ∅ imply U(A; t) is a filter of X.

Proof. (i)⇒(ii). Let x, y ∈ X be such that x, x ∗ y ∈ U(A; t), for any
t ∈ [0, 1]. Then t ≤ TA(x) and t ≤ TA(x∗y). Hence t ≤ min{TA(x), TA(x∗y)} ≤
TA(y). Also, IA(x) ≤ t and IA(x ∗ y) ≤ t and so t ≥ min{IA(x), IA(x ∗ y)} ≥
IA(y). By a similar argument we have t ≥ min{FA(x), FA(x ∗ y)} ≥ FA(y).
Therefore, y ∈ U(A; t).

(ii)⇒(i). Let U(A; t) be a filter of X, for any t ∈ [0, 1] with U(A; t) 6= ∅. Put
TA(x) = IA(x) = FA(x) = t, for any x ∈ X. Then x ∈ U(A; t). Since U(A; t)
is a filter of X, we have 1 ∈ U(A; t) and so TA(x) = t ≤ TA(1). Now, for any
x, y ∈ X , let TA(x ∗ y) = IA(x ∗ y) = FA(x ∗ y) = tx∗y and
TA(x) = IA(x) = FA(x) = tx. Put t = min{tx∗y, tx}. Then x, x ∗ y ∈ U(A; t),
so y ∈ U(A; t). Hence t ≤ TA(y), t ≥ IA(y), t ≥ FA(y) and so

min{TA(x ∗ y), TA(x)} = min{tx∗y, tx} = t ≤ TA(y),

min{IA(x ∗ y), IA(x)} = min{tx∗y, tx} = t ≥ IA(y),

and
min{FA(x ∗ y), FA(x)} = min{tx∗y, tx} = t ≥ FA(y).

Therefore, A ∈ NF(X).2

Theorem 3.5. Let A ∈ NF(X). Then we have

(∀a, b ∈ X) (∀t ∈ [0, 1]) (a, b ∈ U(A; t) ⇒ A(a, b) ⊆ U(A; t)).
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Proof. Assume that A ∈ NF(X). Let a, b ∈ X be such that a, b ∈ U(A; t).
Then t ≤ TA(a) and t ≤ TA(b). Let c ∈ A(a, b). Hence a ∗ (b ∗ c) = 1. Now, by
Proposition 3.1(v) and (BE3), we have

t ≤ min{TA(a), TA(b)} ≤ TA((a ∗ (b ∗ c) ∗ c)) = TA(1 ∗ c) = TA(c),

t ≥ min{IA(a), IA(b)} ≥ IA((a ∗ (b ∗ c) ∗ c)) = IA(1 ∗ c) = IA(c)

and

t ≥ min{FA(a), FA(b)} ≥ FA((a ∗ (b ∗ c) ∗ c)) = FA(1 ∗ c) = FA(c).

Then c ∈ U(A; t). Therefore, A(a, b) ⊆ U(A; t)).2

Corolary 3.1. Let A ∈ NF(X). Then

(∀t ∈ [0, 1]) (U(A; t) 6= ∅ ⇒ U(A; t) =
⋃

a,b∈U(A;t)

A(a, b)).

Proof. It is sufficient prove that U(A; t) ⊆
⋃

a,b∈U(A;t)

A(a, b). For this, assume

that x ∈ U(A; t). Since x ∗ (1 ∗ x) = 1, we have x ∈ A(x, 1). Hence

U(A; t) ⊆ A(x, 1) ⊆
⋃

x∈U(A;t)

A(x, 1) ⊆
⋃

x,y∈U(A;t)

A(x, y).

2

Theorem 3.6. Let X be a self distributive BE-algebra and A ∈ NF(X). Then the
following conditions are equivalent:

(i) A ∈ INF(X),

(ii) TA(y ∗ (y ∗ x)) ≤ TA(y ∗ x), IA(y ∗ (y ∗ x)) ≥ IA(y ∗ x) and
FA(y ∗ (y ∗ x)) ≥ FA(y ∗ x),

(iii) min{TA((z ∗ (y ∗ (y ∗ x))), TA(z)} ≤ TA(y ∗ x),
min{IA((z ∗ (y ∗ (y ∗ x))), IA(z)} ≥ IA(y ∗ x) and
min{FA((z ∗ (y ∗ (y ∗ x))), FA(z)} ≥ FA(y ∗ x).
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Proof. (i)⇒(ii). Let A ∈ NF(X). By (INF1) and (BE1) we have

TA(y ∗ (y ∗ x)) = min{TA(y ∗ (y ∗ x)), TA(1)}
= min{TA(y ∗ (y ∗ x)), TA(y ∗ y)}
≤ TA(y ∗ x),

IA(y ∗ (y ∗ x)) = min{IA(y ∗ (y ∗ x)), IA(1)}
= min{IA(y ∗ (y ∗ x)), IA(y ∗ y)}
≥ IA(y ∗ x)

and

FA(y ∗ (y ∗ x)) = min{FA(y ∗ (y ∗ x)), FA(1)}
= min{FA(y ∗ (y ∗ x)), FA(y ∗ y)}
≥ FA(y ∗ x).

(ii)⇒(iii). Let A be a neutrosophic filter of X satisfying the condition (ii). By
using (NF2) and (ii) we have

min{TA(z ∗ (y ∗ (y ∗ x))), TA(z)} ≤ TA(y ∗ (y ∗ x))
≤ TA(y ∗ x),

min{IA(z ∗ (y ∗ (y ∗ x))), IA(z)} ≥ IA(y ∗ (y ∗ x))
≥ IA(y ∗ x)

and

min{FA(z ∗ (y ∗ (y ∗ x))), FA(z)} ≥ FA(y ∗ (y ∗ x))
≥ FA(y ∗ x).

(iii)⇒(i). Since

x ∗ (y ∗ z) = y ∗ (x ∗ z) ≤ (x ∗ y) ∗ (x ∗ (x ∗ z)),

we have TA(x ∗ (y ∗ z)) ≤ TA((x ∗ y) ∗ (x ∗ (x ∗ z))),
IA(x ∗ (y ∗ z)) ≥ IA((x ∗ y) ∗ (x ∗ (x ∗ z))) and
FA(x ∗ (y ∗ z)) ≥ FA((x ∗ y) ∗ (x ∗ (x ∗ z))), by Proposition 3.1(i). Thus

min{TA(x ∗ (y ∗ z)), TA(x ∗ y)} ≤ min{TA((x ∗ y) ∗ (x ∗ (x ∗ z))), TA(x ∗ y)}
≤ TA(x ∗ z).
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min{IA(x ∗ (y ∗ z)), IA(x ∗ y)} ≥ min{IA((x ∗ y) ∗ (x ∗ (x ∗ z))), IA(x ∗ y)}
≥ IA(x ∗ z)

and

min{FA(x ∗ (y ∗ z)), FA(x ∗ y)} ≥ min{FA((x ∗ y) ∗ (x ∗ (x ∗ z))), FA(x ∗
y)} ≥ FA(x ∗ z).

Therefore, A ∈ INF(X). Let f : X → Y be a homomorphism of BE-algebras

and A ∈ NS(X).
Define tree maps TAf : X → [0, 1] such that TAf (x) = TA(f(x)),
IAf : X → [0, 1] such that IAf (x) = IA(f(x)) and FAf : X → [0, 1] such that
FAf (x) = FA(f(x)), for all x ∈ X. Then TAf , IAf and FAf are well-define and
Af = (TAf , IAf , FAf ) ∈ NS(X).2

Theorem 3.7. Let f : X → Y be an onto homomorphism of BE-algebras and
A ∈ NS(Y). Then A ∈ NF(Y) (resp. A ∈ INF(Y)) if and only if Af ∈ NF(X)
(resp. Af ∈ INF(X)).

Proof. Assume that A ∈ NF(Y). For any x ∈ X , we have

TAf (x) = TA(f(x)) ≤ TA(1Y ) = TA(f(1X)) = TAf (1X),

IAf (x) = IA(f(x)) ≥ IA(1Y ) = IA(f(1X)) = IAf (1X)

and
FAf (x) = FA(f(x)) ≥ FA(1Y ) = FA(f(1X)) = FAf (1X).

Hence (NF1) is valid. Now, let x, y ∈ X . By (NF1) we have

min{TAf (x ∗ y), TAf (x)} = min{TA(f(x ∗ y)), TA(f(x))}
= min{TA(f(x) ∗ f(y)), TA(f(x))}
≤ TA(f(y))

= TAf (y)

Also,

min{IAf (x ∗ y), IAf (x)} = min{IA(f(x ∗ y)), IA(f(x))}
= min{IA(f(x) ∗ f(y)), IA(f(x))}
≥ IA(f(y))

= IAf (y).
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By a similar argument we have min{FAf (x ∗ y), FAf (x)} ≥ FAf (y). Therefore,
Af ∈ NF(X).

Conversely, Assume that Af ∈ NF(X). Let y ∈ Y . Since f is onto, there
exists x ∈ X such that f(x) = y. Then

TA(y) = TA(f(x)) = TAf (x) ≤ TAf (1X) = TA(f(1X)) = TA(1Y ),

IA(y) = IA(f(x)) = IAf (x) ≥ IAf (1X) = IA(f(1X)) = IA(1Y )

and

FA(y) = FA(f(x)) = FAf (x) ≥ FAf (1X) = FA(f(1X)) = FA(1Y ),

Now, let x, y ∈ Y . Then there exists a, b ∈ X such that f(a) = x and
f(b) = y. Hence we have

min{TA(x ∗ y), TA(x)} = min{TA(f(a) ∗ f(b)), TA(f(a))}
= min{TA(f(a ∗ b)), TA(f(a))}
= min{TAf (a ∗ b), TAf (a)}
≤ TAf (b)

= TA(f(b))

= TA(y).

Also, we have

min{IA(x ∗ y), IA(x)} = min{IA(f(a) ∗ f(b)), IA(f(a))}
= min{IA(f(a ∗ b)), IA(f(a))}
= min{IAf (a ∗ b), IAf (a)}
≥ IAf (b)

= IA(f(b))

= IA(y).

By a similar argument we have min{FA(x ∗ y), FA(x)} ≥ FA(y).
Therefore, A ∈ NF(Y).2

4 Conclusion
F. Smarandache as an extension of intuitionistic fuzzy logic introduced the

concept of neutrosophic logic and then several researchers have studied of some
neutrosophic algebraic structures. In this paper, we applied the theory of neu-
trosophic sets to BE-algebras and introduced the notions of (implicative) neutro-
sophic filters and many related properties are investigated.
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