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Abstract

In this paper, those polygroups which are partially ordered are in-
troduced and some properties and related results are given.
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1 Introduction and Preliminaries

The notion of a hyperstructure and hypergroup, as a generalization of
group, was introduced by F. Marty [5] in 1934 at the 8th congress of Scan-
dinavian Mathematicians. In this definition for nonempty set H, a function
· : H×H −→ P ∗(H), where P ∗(H) is the set of all nonempty subsets of H, is
called a hyperoperation on H, and the system (H, ·) is called a hypergroupoid.
If the hypergroupoid H satisfies a ·H = H · a = H, for all a ∈ H, it is called
a hypergroup. In a hypergroupoid H, for A,B ⊆ H and x ∈ H, A · B and
A · x are defined as

A ·B =
⋃

a∈A,b∈B

a · b, A · x = A · {x}.

An element e of hypergorupoid H is called an identity if for all a ∈ H,
a ∈ a ◦ e ∩ e ◦ a. An element a′ ∈ H is called an inverse for a ∈ H if there is
an identity e ∈ H such that e ∈ a ◦ a′ ∩ a′ ◦ a.

By a subhypergroupoid of hypergroupoid H we mean a subset K of H that
is closed with respect to the hyperoperation on H, and contains the unique
identity of H and the inverses of its elements, provided there exist.
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Hyperstructures have many applications to several sectors of both pure
and applied sciences. A short review of the theory of hyperstructures appear
in [2]. In [3] a wealth of applications can be found, too. There are appli-
cations to the following subjects: geometry, hypergraphs, binary relations,
lattices, fuzzy set and rough sets, automata, cryptography, combinatorics,
codes, artificial intelligence and probabilities. Polygroups are certain sub-
classes of hypergroups which studied in 1981 by Ioulidis in [4] and are used
to study colour algebra.

A polygroup is a system < G, ·,−1 , e > where e ∈ G, ‘−1’ is a unary oper-
ation on G and ‘·’ is a binary hyperoperation on H satisfying the following:

(1) (x · y) · z = x · (y · z),

(2) e · x = x · e = {x},

(3) x ∈ y · z ⇔ y ∈ x · z−1 ⇔ z ∈ y−1 · x.

In any polygroup the following hold:

e ∈ x · x−1 ∩ x−1 · x, e−1 = e, (x−1)−1 = x, (x · y)−1 = y−1 · x−1

where A−1 = {x−1 : x ∈ A}.
Some other concepts in polygroups is as follows.
A nonempty subset K of polygroup G is said to be a subpolygroup if and

only if e ∈ K and < K, ·,−1 , e > is itself a polygroup. Subpolygroup K of
polygroup G is said to be normal if and only if a−1Ka ⊆ K, for all a ∈ G.

From now on, in this paper, G =< G, ·,−1 , e > will denote a polygroup.

2 Ordered hyperstructures: Definition and

properties

This section is devoted to introduce the concept of a compatible order on a
polygroup. It is first introduced the concept of an ordered hypergroupoid and
some basic notions. Then, the concept of ordered polygroups is introduced
and some related results are given. For more details on compatible orders,
specially ordered algebraic structures we refer to [1].

Definition 2.1. Let (H, ·) be a hypergroupoid. By a compatible order on H
we mean an order “≤” with respect to which all translations x 7→ x · y and
x 7→ y · x are isotone, that is

x ≤ y implies b · x · a ≤ b · y · a, for all a, b ∈ H (2.1)
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where for A,B ⊆ H, A ≤ B means that for all a ∈ A there exists b ∈ B and
for all b ∈ B there exists a ∈ A such that a ≤ b.

Definition 2.2. By an ordered hypergroupoid we mean a hypergroupoid on
which is defined a compatible order.

When “·” is commutative or associative, H is said to be an ordered com-
mutative hypergroupoid or an ordered semihypergroup, respectively.

Example 2.3. (1) Consider R1 = [1,∞), the set of all real numbers greater
than 1, as a poset with the natural ordering, and define x · y to be the
set of all upper bounds of {x, y}. Thus (R1, ·,≤) is an ordered commu-
tative semihypergroup with 1 as the unique identity.

(2) Consider Z, the additive group of all integers which is a chain with the
natural ordering. For m,n ∈ Z, let m·n be the subgroup of Z generated
by {m,n}. Then (Z, ·,≤) is an ordered commutative semihypergroup
in which 0 is an identity.

(3) Let (G, ·, e,≤) be an ordered group, and let x ◦ y = 〈{x, y}〉, the sub-
group of G generated by {x, y}. Then, (G, ◦,≤) is an ordered commu-
tative hypergroup with an identity e.

(4) Let (L;∨,∧, 0) be a lattice with the least element 0. For a, b ∈ L, let
a ◦ b = F (a ∧ b), where F (x) is the principal filter generated by x ∈ L.
Then, (L; ◦) is an ordered hypergroup. Also, 0 is an identity, and if
x ∈ L be such that x∧ y = 0, for some y ∈ L, then y is an inverse of x.

Definition 2.4. Let H be an ordered hypergroupoid.

(1) For every x, y ∈ H with x ≤ y, the set [x, y] = {z ∈ H : x ≤ z ≤ y} is
said to be an interval in H.

(2) A subset A of H is said to be convex if for all a, b ∈ A, where a ≤ b,
we have [a, b] ⊆ A.

Definition 2.5. Let (E;≤) be an ordered set. A subset D of E is said to
be a down-set if y ≤ x and x ∈ D imply y ∈ D. Down-set D is said to be
principal if there exists x ∈ D such that D = {y ∈ E : y ≤ x} denoted by
x↓.

Definition 2.6. Let (G; ◦G,≤G) and (H; ◦H ,≤H) be ordered hypergroupoids
and f : G −→ H be an isotone map, that is f(x) ≤H f(y) whenever x ≤G y.
Then,
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(1) f is said to be an order homomorphism if f is a homomorphism of
hypergroupoids (G; , ◦G) and (H; ◦H),

(2) f is an order isomorphism if f is an isomorphism of hypergroupiods,
and f−1 is isotone,

(3) the kernel of f is defined by kerf = {(x, y) ∈ G×G : f(x) = f(y)}.

3 Ordered polygroups

In this section, we assume that G =< G, ·,−1 , e > is a polygroup unless
otherwise mentioned. Hereafter, in this paper, we use xy for x · y, and a for
{a}.

Definition 3.1. By an ordered polygroup we mean a polygroup which is also
a poset under the binary relation ≤ and in which (2.1) holds.

Definition 3.2. Let H be an ordered hypergroupoid with a unique identity
e. An element x ∈ H is called positive if e ≤ x. The set of all positive
elements of H is called the positive cone of H and is denoted by H+. x ∈ H
is called negative if x ≤ e. The set of all negative elements of H is called the
negative cone of H and is denoted by H−.

By an elementary consequence of translations we have

Proposition 3.3. In any ordered polygroup G, for each x, y ∈ G, we have

x ≤ y ⇔ x−1y ∩G+ 6= ∅ ⇔ yx−1 ∩G+ 6= ∅ ⇔ xy−1 ∩G− 6= ∅
⇔ y−1x ∩G− 6= ∅ ⇔ y− ≤ x−.

Theorem 3.4. A subset P of a polygroup G is the positive cone with respect
to some compatible order if and only if

(1) P ∩ P−1 = {e},

(2) P 2 = P ,

(3) for all x ∈ G, xPx−1 = P .

Moreover, if this order is total, P ∪ P−1 = G.

Proof. (⇒) Let ≤ be a compatible order on G and P = G+, the associ-
ated positive cone.

(1) If x ∈ P ∩P−1, on the one hand e ≤ x, and on the other hand x = y−1,
for some y ∈ P . Since, e ≤ y, then x = y−1 ≤ e proves that x = e.
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(2) Since e ∈ P , P = Pe ⊆ PP = P 2. Now, let x, y ∈ P . Then e ≤ x
and e ≤ y and so e ≤ xy which implies that xy ⊆ P . Hence, P 2 ⊆ P .

(3) Let y ∈ P , and x ∈ G. Then, e ≤ y implies that e ∈ xex−1 ≤ xyx−1

proves that xyx−1 ⊆ P . Since, this follows for all x ∈ G, replacing x by x−1,
we have x−1Px ⊆ P and so P ⊆ xPx−1, complete the proof.

(⇐) Let P be a subset of G that satisfies properties (1)-(3), and define
the relation ≤ on G by

x ≤ y ⇔ yx−1 ∩ P 6= ∅.

Since, e ∈ P , by (3), xx−1 = xex−1 ⊆ xPx−1 = P implies that x ≤ x and so
≤ is reflexive. Suppose that x ≤ y and y ≤ x, for x, y ∈ G. Then yx−1∩P 6= ∅
and xy−1 ∩ P 6= ∅ whence xy−1 ∩ P−1 ∩ P 6= ∅, implies that e ∈ xy−1, i.e.,
x = y proving ≤ is antisymmetric. Now, assume that x ≤ y and y ≤ z, for
x, y, z ∈ G. Then yx−1 ∩ P 6= ∅ and zy−1 ∩ P 6= ∅. Let u ∈ yx−1 ∩ P and
v ∈ zy−1 ∩ P . Then uv ⊆ P 2 = P . On the other hand, ∈ zy−1 and v ∈ yx−1

imply y−1 ∈ z−1u and y ∈ vx whence e ∈ y−1y ⊆ z−1(uv)x. Then, there is
t ∈ uv and s ∈ tx such that e ∈ z−1s. This implies that z = s ∈ tx. Hence,
t ∈ zx−1, i.e., uv ∩ zx−1 6= ∅ whence zx−1 ∩ P 6= ∅ proving ≤ is transitive.
Thus, ≤ is an order. For compatibility, we first prove that Px = xP , for all
x ∈ G. Let z ∈ G. Then

z ∈ Px ⇒ z ∈ yx for some y ∈ P ⇒ x−1z ⊆ x−1yx = x−1y(x−1)−1 ⊆ P

⇒ z ∈ xP,

i.e., Px ⊆ xP . By a similar way, we can prove that xP ⊆ Px. Hence,
xP = Px, for all x ∈ G. Now, assume that x ≤ y and a, b ∈ G. Since, ≤ is
reflexive, by (3)

ayb(axb)−1 = aybb−1x−1a−1 ⊆ ayPx−1a−1 ⊆ aPyx−1a−1 ⊆ aP 2a−1

= aPa−1 = P

which shows that axb ≤ ayb. By the definition of ≤ we get x ∈ P if and only
if e ≤ x and so P = G+.

If G is totally ordered, then x ≤ e or e ≤ x, for all x ∈ G. So, e ∈ xx−1 ≤
ex−1 = x−1 and so x ∈ P or x ∈ P−1, observe that x = (x−1)−1. Thus,
G = P ∪ P−1. 2

Proposition 3.5. If G is an ordered polygroup with |G| > 1, then G can not
have a top element or a bottom element.

Proof. Let G = {e, a}. If e < a or a < e, then a = a−1 < e
or e < a−1 = a, respectively, which is a contradiction. Now, assume that
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|G| > 2, t be the top element of G and e 6= a ∈ G. Then a ≤ t and so ta ≤ t
whence t ∈ te ⊆ taa−1 ≤ ta−1. Hence, t ∈ ta−1. Likewise, we conclude that
t ∈ a−1t. By the uniqueness, we get a = e which is a contradiction.

The proof of the other case is concluded as well. 2

Definition 3.6. An element x of G is said to be of order n, n ∈ N, if e ∈ xn

where xn = (· · · ((
n times︷ ︸︸ ︷

x ◦ x) ◦ x) ◦ · · · ) ◦ x). If such a natural number does not
exist, we say that x is of infinite order.

Theorem 3.7. Suppose that G is an ordered polygroup in which G+ 6= {e}.
Then every element of G+ \ {e} is of infinite order.

Proof. Suppose that x ∈ G+ \ {e}. We first observe that if x = x−1, x
can not belong to G+. Then, e < x implies that e < x = ex < x2. Moreover,
this implies that e 6∈ x2. Similarly, we conclude that e < x3 and e 6∈ x3.
Continuing this process we get e < xn and e 6∈ xn, for all n ∈ N, proving x
is not of finite order. 2

Corollary 3.8. Any ordered polygroup in which every nontrivial element is
of finite order is an antichain.

Proof. Let G be an ordered polygroup satisfying the hypothesis. By
Theorem 3.7, we know that G+ = {e}. Now, if a, b ∈ G be such that a ≤ b,
then e ∈ a−1a ≤ a−1b and so e ≤ u, for some u ∈ a−1b. This implies that
u ∈ G+ and so u = e. Thus, e ∈ a−1b whence a = b. This means that G is
an antichain. 2

Corollary 3.9. Every finite ordered polygroup is an antichain.

Example 3.10. Let G = {e, a}. Then G is a polygroup where the hyperop-
eration is given by the following table:

◦ e a
e e a
a a {e, a}

in which a−1 = a i.e., a is an idempotent. Now, if a is a positive element,
so G+ = {e, a} and hence (G+)−1 ∩ G+ 6= {e}. This contradicts Theorem
3.4. This example shows that the converse of Theorem 3.7 does not hold in
general.

Definition 3.11. If G is an ordered polygroup, by a convex subgroup of G
we shall mean a subgroup which is also a convex subset, under the order of
G.
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Definition 3.12. A nonempty subset H of G is said to be S-reflexive if
xy ∩H 6= ∅ implies that xy ⊆ H, for all x, y ∈ G.

Theorem 3.13. If H is a subpolygroup of an ordered polygroup G then
H+ = H ∩ G+. Moreover, if H+ is S-reflexive, the following statements
are equivalent:

(1) H is convex;

(2) H+ is a down-set of G+.

Proof. Since, eH = eG, it is clear that H+ = H ∩G+.
(1) ⇒ (2) Suppose that eH ≤ y ≤ x where eH , x ∈ H+ ⊆ H. Then (1)

gives y ∈ H ∩G+ = H+ and so H+ is a down-set of G+.
(2) ⇒ (1) Suppose now that x ≤ y ≤ z where x, z ∈ H. Then x−1x ≤

x−1y ≤ x−1z. Thus, x−1z ⊆ H+ and so there is a ∈ H+ such that a ∈ x−1z.
Hence, there is b ∈ x−1y such that b ≤ a ∈ H+, and since H+ is a down-set of
G+, b ∈ H+, i.e., x−1y∩H+ 6= ∅. Since, H+ is S-reflexive, so x−1y ⊆ H+ ⊆ H
whence y ∈ xH = H, proving H is convex. 2

If G is an ordered polygroup and H is a normal subpolygroup of G, then
a natural candidate for a positive cone of G/H is \H(G+), where \H : G −→
G/H is the canonical projection. Precisely when this occurs is the substance
of the following result.

Theorem 3.14. Let G be an ordered polygroup and let H be a normal sub-
polygroup of G. Then \H(G+) = {pH : p ∈ G+} is the positive cone of a
compatible order on the quotient polygroup G/H if and only if H is convex.

Proof. Suppose that Q = {pH : p ∈ G+} is the positive cone of a
compatible order on G/H. To show that H is convex, suppose that c ≤ b ≤ a
with c, a ∈ H. Then (bH)−1 = (bH)−1 · aH = b−1aH. On the other hand,
b ≤ a implies that b−1a∩G+ 6= ∅. Hence (bH)−1∩Q 6= ∅ and so bH∩Q−1 6= ∅.
Similarly, we have bH = bH · c−1H = bc−1H and since bc−1 ∩ G+ 6= ∅,
bH ∩Q 6= ∅. Thus, bH ∩ (Q ∩Q−1) 6= ∅ whence bH = H, i.e., b ∈ H.

Conversely, suppose that H is convex and let Q = {pH : p ∈ G+}. It is
clear that Q2 = Q. Suppose now that xH ∈ Q ∩ Q−1. Then xH = pH =
q−1H where p, q ∈ G+. These equalities also give pq ∩ H 6= ∅. Now, since
p ≤ pq, then eH ≤ p ≤ u, where u ∈ pq ∩H whence the convexity of H gives
p ∈ H. It follows that xH = pH = H and hence Q ∩ Q−1 = {H}. Finally,
since G+ is a normal subsemihypergroup of G it is clear that Q = \H(G+) is
a normal subsemihypergroup of G/H. It now follows by Theorem 3.4 that
Q is the positive cone of a compatible order on G/H. 2
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If H is a convex normal subpolygroup of an ordered polygroup G then
the order ≤H on G/H that corresponds to the positive cone {pH : p ∈ G+}
can be described as in the proof of Theorem 3.4. We have

xH ≤H yH ⇒ yx−1H ⊆ Q

⇒ (∀a ∈ yx−1)(∃p ∈ G+)aH = pH

⇒ (∀a ∈ yx−1)(∃p ∈ G+)(∃h ∈ H)a ∈ ph ≥ h

⇒ (∀a ∈ yx−1)(∃h ∈ H) a ≥ h

⇒ yx−1 ≥ h.

From the last inequality and that y ∈ ye ⊆ yx−1x it follows that y ≥ u, for
some u ∈ hx. Conversely, assume that there exists h ∈ H and u ∈ hx such
that y ≥ u, and let a ∈ yx−1. From yx−1 ≥ yx−1 it follows that a ≥ t, for
some t ∈ ux−1 and hence at−1 ≥ tt−1. This implies that v ≥ e, for some
v ∈ at−1 and so

vH ∈ at−1H ∩Q. (3.1)

Now, t ∈ ux−1 implies that t−1 ∈ xu−1 ⊆ xx−1h−1 ⊆ xx−1H and so at−1 ⊆
axx−1H = axHx−1 = aH. Thus, at−1H ⊆ aH. Combining (3.1), we get
{aH}∩Q 6= ∅, i.e., aH ∈ Q and so aH = pH, for some p ∈ G+. This implies
yx−1H ⊆ Q and hence xH ≤H yH, completes the proof.

Thus we see that ≤H can be described by

xH ≤H yH ⇔ (∃h ∈ H)(∃u ∈ hx) y ≥ u.

In referring to the ordered quotient polygroup G/H we shall implicitly infer
that the order is ≤H as described above.

Here we give a characterization of polygroup homomorphisms that are
isotone.

Theorem 3.15. Let G and H be ordered polygroups. If f : G −→ H is a
polygroup homomorphism, f is isotone if and only if f(G+) ⊆ H+.

Proof. Assume that f is isotone. If x ∈ G+, i.e., x ≥ e then f(x) ≥
f(eG) = eH means that f(x) ∈ H+.

Conversely, assume that x ≤ y inG. Then yx−1 ⊆ G+ and so f(y)f(x)−1 =
f(yx−1) ⊆ f(G+) ⊆ H+. This implies that f(y) ≥ f(x) proving f is isotone.
2

Corollary 3.16. If G is an ordered polygroup and H is a convex normal
subpolygroup of G, then the natural homomorphism \H : G −→ G/H is
isotone.
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Proof. By Theorem 3.15, it is enough to prove that \(G+) ⊆ (G/H)+.
For this, let yH ∈ \(G+). Then yH = gH, for some g ∈ G+ whence y ∈
gh ≥ h for some h ∈ H. This implies that eH ≤H yH and so yH ∈ (G/H)+.
2

Definition 3.17. Let G and H are ordered polygroups. A mapping f :
G −→ H is said to be exact if f(G+) = H+.

Definition 3.18. Two ordered polygroupsG andH are said to be isomorphic
if there is a polygroup isomorphism f : G −→ H that is also an order
isomorphism.

If two ordered polygroups G and H are isomorphic we write G '̇ H.

Theorem 3.19. For ordered polygroups G and H, the following are equiva-
lent:

(1) G'̇H,

(2) there is an exact polygroup isomorphism f : G −→ H.

Proof. (1) ⇒ (2) If G and H are isomorphic, there is a polygroup
isomorphism f : G −→ H which is also an order isomorphism. By Theorem
3.15, f(G+) ⊆ H+. Let g = f−1. Obviously, g satisfies the conditions of
Theorem 3.15. Hence, g(H+) ⊆ G+ whence H+ = f(g(H+)) ⊆ f(G+).
Thus H+ = f(G+) and so (2) holds.

(2) ⇒ (1) It is obvious. 2

Theorem 3.20. Let G and H be ordered polygroups and f : G −→ H be an
exact polygroup homomorphism. Then Imf '̇ G/kerf .

Proof. We first observe that kerf is a convex normal subpolygroup of
G and so G/kerf is an ordered polygroup. By first isomorphism theorem of
polygroups there is an isomorphism φ : G/kerf ' Imf which φ(xK) = f(x)
where K = kerf . It remains that we prove φ is exact. Let xK ∈ (G/K)+.
Then eGK ≤K xK whence k ≤ x, for some k ∈ K, and so eH = f(k) ≤ f(x)
whence φ(xK) = f(x) ∈ (Imf)+. Conversely, if f(x) ∈ (Imf)+ ⊆ H+,
since f is exact, there exists g ∈ G+ such that f(x) = f(g). Consequently,
xK = gK and so x ∈ gk ≥ k, for some k ∈ K. Thus,

xK ∈ (G/K)+ ⇔ φ(xK) = f(x) ∈ (Imf)+

proving φ is exact. It now follows by Theorem 3.19 that G/kerf '̇ Imf . 2
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