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Abstract

Let R be a Γ-hyperring and M be an Γ-hypermodule over R. We
introduce and study fuzzy RΓ-hypermodules. Also, we associate a Γ-
hypermodule to every fuzzy Γ-hypermodule and investigate its basic
properties.
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1 Introduction

Hyperstructure theory was born in 1934 when Marty [13] defined hy-
pergroups, began to analysis their properties and applied them to groups.
Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. Zadeh [18] introduced the notion of a fuzzy subset of a non-empty
set X, as a function from X to [0, 1]. Rosenfeld [15] defined the concept of
fuzzy group. Since then many papers have been published in the field of
fuzzy algebra. In [16], Sen, Ameri and Chowdhury introduced the notions of
fuzzy hypersemigroups and obtained a characterization of them. Then in [10],
Leoreanu-Fotea and Davvaz introduced and analyzed the fuzzy hyperring no-
tion and in [11], Leoreanu-Fotea introduced the fuzzy hypermodule notion
and obtained a connection between hypermodules and fuzzy hypermodules
(for more information about fuzzy hypersrtuctures see [1]-[6]). The notion
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of a Γ-ring was introduced by N. Nobusawa in [14]. Recently, W.E. Barnes
[7], J. Luh [12], W.E. Coppage studied the structure of Γ-rings and obtained
various generalization analogous of corresponding parts in ring theory. In [3]
Ameri, Sadeghi introduced the notion of Γ-module over a Γ-ring.

Now in this paper we introduced and study fuzzy Γ-hypermodules as
generalization of Γ-hypermodule as well as fuzzy modules. The paper has
been prepared in 5 sections. In section 2, we introduce some definitions and
results of Γ-hypermodules and fuzzy sets which we need to developing our
paper. In section 3, we introduced and study fuzzy Γ-hypermodules and
obtain its basic results. In section 4, we study fundamental relation of fuzzy
Γ-hypermodules.

2 Preliminaries

In this section, we present some definitions which need to developing our
paper. As it is well known a hypergroupoid is a set together with a function
◦ : H × H −→ P ?(H), which is called a hyperoperation, where P ?(H)
denotes the set of all nonempty subsets of H. A hypergroupoid (H, ◦), which
is associative, that is x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H is called a
semihypergroup. A hypergroup is a semihypergroup such that for all x ∈ H
we have x ◦ H = H = H ◦ x (called the reproduction axiom). We say that
a hypergroup H is canonical hypergroup if it is commutative, it has a scalar
identity, every element has a unique inverse and it is reversible (for more
details of hypergroups see [9]).

Definition 2.1. The triple (R,+, .) is a hyperring (in the sense of Krasner)
if the following hold: (i) (R,+) is a commutative hypergroup;
(ii) (R, .) is a semihypergroup;
(iii) the hyperoperation ”.” is distributive over the hyperoperation ”+”, which
means that for all r, s, t of R we have: r.(s + t) = r.s + r.t and (r + s).t =
r.t+ s.t ( for more about hyperrings see [9] and [11]).

Definition 2.2. Let (R,], ◦) be a hyperring. A nonempty set M , endowed
with two hyperoperations ⊕,� is called a left hypermodule over (R,], ◦) if
the following conditions hold:
(1) (M,⊕) is a commutative hypergroup;
(2) � : R×M −→ P ∗(M) is such that for all a, b ∈M and r, s ∈ R we have
(i) r � (a⊕ b) = (r � a)⊕ (r � b);
(ii) (r ] s)� a = (r � a)⊕ (s� a);
(iii) (r ◦ s)� a = r � (s� a).

For more details about hypermodules see [8], [9], [?] and [18]).
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Definition 2.3. ([7]) Let R and Γ be additive abelian groups. We say that
R is a Γ − ring if there exists a mapping

· : R× Γ×R −→ R
(r, γ, r′) 7−→ r.γ.r′ (= rγr′)

such that for every a, b, c ∈ R and α, β ∈ Γ, the following conditions hold:
(i) (a+ b)αc = aαc+ bαc;

a(α + β)c = aαc+ aβc;
aα(b+ c) = aαb+ aαc;

(ii) (aαb)βc = aα(bβc).

Definition 2.4. Let R be a Γ-ring. A (left)gamma module over R is an
additive abelian group M together with a mapping . : R× Γ×M −→M
( the image of (r, γ,m) being denoted by rγm), such that for all m,m1,m2 ∈
M and γ, γ1, γ2 ∈ Γ and r, r1, r2 ∈ R the following conditions are satisfied:
(GM1) r.γ.(m1 +m2) = r.γ.m1 + r.γ.m2;
(GM2) (r1 + r2).γ.m = r1.γ.m+ r2.γ.m;
(GM3) r.(γ1 + γ2).m = r.γ1.m+ r.γ2.m;
(GM4) r1.γ1.(r2.γ2.m) = (r1.γ1.r2).γ2.m.
A right gamma module over R is defined in analogous manner. In this case
we say that M is a left(or right) RΓ-module (for more details about gamma
modules see [2]).
Let (H, ◦) be a hypergroupoid. If {A,B} ⊆ P ∗(H) and ρ is an equivalence
relation on H, then we denote Aρ̄B if

∀a ∈ A, ∃b ∈ B : aρb, and, ∀b ∈ B, ∃a ∈ A : aρb.

We denote A ¯̄ρ B if ∀a ∈ A, ∀b ∈ B we have aρb.
An equivalence relation ρ on H is called regular (strongly regular) if for

all a, a′, b, b′ of H. The following implication holds:

aρb, a′ρb′ =⇒ (a ◦ a′)ρ̄(b ◦ b′)

(aρb, a′ρb′ =⇒ (a ◦ a′)¯̄ρ(b ◦ b′)).

Theorem 2.1. ([17]) Let (M,+, .) be a hypermodule over a hyperring R, let
δ be an equivalence relation on M and let ρ be an strongly regular relation
on R. The following statements hold:
(1) if δ is strongly regular on M and ∀x, y ∈M and ∀r ∈ R the hyperopera-
tions:
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δ(x)⊕ δ(y) = {δ(z) | z ∈ x+ y} and ρ(r)� δ(x) = {δ(z) | z ∈ r.x},

is define a module structure on M/δ over R/ρ;
(2) if (M/δ,⊕,�) is a module over R/ρ, then δ is strongly regular on M .
The relation δ∗ is the smallest strongly regular relation on the hypermod-
ule (M,+, .) such that (M/δ,⊕,�) the quotient structure (M/δ,⊕,�) is a
module over the ring R/ρ, and it is called the fundamental relation over
hypermodule M .

Hence, δ∗ is the smallest equivalence relation on M , such that M/δ∗ is
a module over the ring R/ρ∗, where ρ∗ is fundamental relation on R. If we
denote by U the set of all expressions consisting of finite hyperoperations
either on R and M or the external hyperoperation applied on finite sets of
elements of R and M , then we have

xδy ⇐⇒ ∃u ∈ U , such that {x, y} ⊂ u.

δ∗ is the transitive closure of δ. In the fundamental module (M/δ∗,⊕,�)
over R/ρ∗, the hyperoperations ⊕ and � are defined as follows:
∀x, y ∈ M and ∀z ∈ δ∗(x) ⊕ δ∗(y), we have δ∗(x) � δ∗(y) = δ∗(z); ∀r ∈
R, ∀x ∈ M and ∀z ∈ δ∗(r).δ∗(x), we have ρ∗(r) � δ∗(x) = δ∗(z), (for more
details about the fundamental relation on hyperstructures see [8] and [9]).

Definition 2.5. A multivalued system (R,+, .) is a Γ-hyperring if the fol-
lowing hold:
(i) (R,+) and Γ are canonical hypergroups;
(ii) (R, .) is semihypergroup.
(iii) (.) is distributive with respect to (+), i.e., for all x, y, z in R we have
x.(y + z) = (x.y) + (x.z) and (x+ y).z = (x.z) + (y + z).

Definition 2.6. Let (R,], ◦) be a Γ-hyperring and (Γ, ∗) be a canonical hy-
pergroup. We say that (M,+, .) is a left Γ − hypermodule over R, if (M,+)
be a canonical hypergroup and there exists a mapping

· : R× Γ×M −→ P ?(M)
(r, γ,m) 7−→ r · γ ·m

such that for every r, s ∈ R and α, β ∈ Γ and a, b ∈ M , the following
conditions are satisfied:
(GHM1) (i) (r ] s).α.a = r.α.a+ s.α.a;

(ii) r.(α ∗ β).a = r.α.a+ r.β.a;
(iii) r.α.(a+ b) = r.α.a+ r.α.b;

(GHM2) (r ◦ α ◦ s).β.a = r.α.(s.β.a).
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A right Γ-hypermodule of R is defined in a similar way. In this case we say
that M is a RΓ-hypermodule.

3 Fuzzy Gamma Subhypermodules

In the sequel R is a Γ-hyperring and all gamma hypermodules are con-
sidered over R. In [16] M.K. Sen, R. Ameri, G. Chowdhury introduced the
notion of fuzzy semihypergroups, in [10] V. Leoreanu-Fotea, B. Davvaz study
fuzzy hyperrings and V. Leoreanu-Fotea in [11] studied fuzzy hypermodules.
Now in this section we follows these and introduce and studied fuzzy gamma
hypermodules.

Let S and Γ be two nonempty sets. F ∗(S) denotes the set H of all
nonzero fuzzy subset of S. A Fuzzy Γ − hyperoperation on S is a map ◦ :
S × Γ × S −→ F ∗(S), which associates a nonzero subset a ◦ γ ◦ b for all
a, b ∈ S and γ ∈ Γ. (S, ◦) is called a Fuzzy Γ − hypergroupoid .

A fuzzy Γ-hypergroupoid (S, ◦) is called a fuzzy Γ-hypersemigroup if for
all a, b, c ∈ S and α, β ∈ Γ, we have a ◦ α ◦ (b ◦ β ◦ c) = (a ◦ α ◦ b) ◦ β ◦ c,
where for any µ ∈ F ∗(S), we have (a ◦ γ ◦ µ)(r) =

∨
t∈S((a ◦ γ ◦ t)(r) ∧ µ(t))

and (µ ◦ γ ◦ a)(r) =
∨
t∈S(µ(t) ∧ (t ◦ γ ◦ a)(r)) for all r ∈ S, γ ∈ Γ.

If A is a nonempty subset of S and x ∈ S, then for all r ∈ S, γ ∈ Γ we
have:

(x ◦ γ ◦ A)(r) =
∨
a∈A

(x ◦ γ ◦ a)(r),

and

(A ◦ γ ◦ x)(r) =
∨
a∈A

(a ◦ γ ◦ x)(r).

A fuzzy Γ-hypersemigroup (S, ◦) is called a fuzzy Γ-hypergroup if for all
a ∈ S and γ ∈ Γ, we have a ◦ γ ◦S = S ◦ γ ◦ a = χS. We say that an element
e of (S, ◦) is identity (resp. scalar identity) if for all s, r ∈ S, γ ∈ Γ, we have

(e ◦ γ ◦ r)(r) > 0, and (r ◦ γ ◦ e)(r) > 0,

((e ◦ γ ◦ r)(s) > 0, and (r ◦ γ ◦ e)(s) > 0 itfollowsr = s).

Let (S, ◦) be a fuzzy hypergroup, endowed with at least an identity. An
element a′ ∈ S is called an inverse of a ∈ S if there is an identity e ∈ S, such
that
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(a ◦ a′)(e) > 0, and (a′ ◦ a)(e) > 0.

Definition 3.1. A fuzzy hypergroup S is regular if it has at least one identity
and each element has at least one inverse.
A regular fuzzy hypergroup (S, ◦) is called reversible if for any x, y, a ∈ S, it
satisfies the following conditions:
(1) if (a◦x)(y) > 0, then there exists an inverse a1 of a, such that (a1◦y)(x) >
0;
(2) if (x◦a)(y) > 0, then there exists an inverse a2 of a, such that (y◦a2)(x) >
0.

Definition 3.2. We say that a fuzzy hypergroup S is a fuzzy canonical if
(1) it is commutative;
(2) it has an scalar identity;
(3) every element has a unique inverse;
(4) it is reversible.

Let µ and ν be two nonzero fuzzy subsets of a fuzzy Γ-hypergroupoid (S, ◦).
We define

(µ ◦ γ ◦ ν)(t) =
∨
p,q∈S

(µ(p) ∧ (p ◦ γ ◦ q)(t) ∧ ν(q), ∀t ∈ S, γ ∈ Γ.

In the following we introduce and study fuzzy gamma hyperrings .

Definition 3.3. Let R,Γ be two nonempty sets and �,� be two fuzzy hy-
peroperations on R and ⊗ be a fuzzy hyperoperation on Γ. Let (R,�) and
(Γ,⊗) be two canonical fuzzy hypergroups. R is called a fuzzy Γ-hyperring if
there exists the mapping:

� : R× Γ×R −→ F ∗(R)
(r, γ, s) 7−→ r � γ � s,

such that for all r, s, t ∈ R,α, β ∈ Γ, the following conditions are satisfied:
(i) r � α� (s� t) = (r � α� s)� (r � α� t);
(ii) r � (α⊗ β)� s = (r � α� s)� (r � β � s);
(iii) (r � s)� α� t = (r � α� t)� (s� α� t);
(iv) r � α� (s� β � t) = (r � α� s)� β � t.

Definition 3.4. Let (Γ,⊗) be a fuzzy canonical hypergroups. Let (R,�,�)
be a fuzzy Γ-hyperring. A nonempty set M , endowed with two fuzzy Γ-
hyperoperation ⊕,� is called a left fuzzy Γ-hypermodule over (R,�.�) if
the following conditions hold:
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(1) (M,⊕) is a canonical fuzzy Γ-hypergroup;
(2) � : R × Γ ×M −→ F ∗(M) is such that for all a, b ∈ M, r, s ∈ R and
α, β ∈ Γ we have

(i) r � α� (a⊕ b) = (r � α� a)⊕ (r � α� b);
(ii) (r � s)� α� a = (r � α� a)⊕ (s� α� a);
(iii) r � (α⊗ β)� a = (r � α� a)⊕ (r � β � a);
(iv) r � α� (s� β � a) = (r · α · s)� β � a.

If both (R,�), (Γ,⊗) and (M,⊕) have scaler identities, denoted by 0R, 0Γ and
0M , then the fuzzy Γ-hypermodule (M,⊕,�) also satisfies the condition:

0R � γ � a = χ0M
,

r � 0Γ � a = χ0Γ
,

r � γ � 0M = χ0M
,

for all r ∈ R, γ ∈ Γ, a ∈ A. Moreover, if (R,�) has an identity, say
1, then the fuzzy Γ-hypermodule (M,⊕,�) is called unitary if it satisfies the
condition:
for all a of M , we have 1� γ � a = χa.

Clearly, any fuzzy Γ-hyperring is a fuzzy Γ-hypermodule over itself.
Proposition 3.5. Let (M,+, .) be a module over a ring (R,], ◦) and Γ = R.
We define the following fuzzy Γ-hyperoperations:
for a, b of M , a⊕ b = χ{a,b},
for all a of M and r ∈ R, γ ∈ Γ, r � γ � a = χ{r.γ.a},
for all r, s of R, r � s = χ{r,s} and r � γ � s = χ{r◦γ◦s}.
Then (M,⊕,�) is a fuzzy Γ-hypermodule over the fuzzy Γ-hyperring (R,�,�).
Note that the last theorem is satisfied, when M is a Γ-module over a Γ-ring
R, such that Γ 6= R.
Proposition 3.6. Let (R, ◦) and (S, •) be two fuzzy Γ-hyperrings. Let
(M,⊕,�) be a left fuzzy Γ-hypermodule overR and a right fuzzy Γ-hypermodule
over S. Then

A = {
(
r m
0 s

)
| r ∈ R, s ∈ S,m ∈M} is a fuzzy Γ-hyperring and fuzzy

Γ-hypermodule over A, under the mappings

? : A× Γ× A −→ F ∗(A)

(

(
r m
0 s

)
, γ,

(
r1 m1

0 s1

)
) 7−→(

r ◦ γ ◦ r1 r � γ �m1 ⊕m� γ � s1

0 s • γ • s1

)
.
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such that(
r ◦ γ ◦ r1 r � γ �m1 ⊕m� γ � s1

0 s • γ • s1

)(
r2 m2

0 s2

)
=(

(r ◦ γ ◦ r1)(r2) (r � γ �m1 ⊕m� γ � s1)(m2)
0 (s • γ • s1)(s2)

)
={

1, r2,m2, s2 6= 0
0, otherwise.

.
Proof. Straightforward.2
Example 3.7. Let R be a Γ-ring and (M,+, .) a Γ-module. Consider the
mapping α : M −→ R. Then M is an fuzzy Γ-hypermodule over M ,
under the following operations:

m⊕n = m+n. and ◦ : M×Γ×M −→ F ∗(M)(m, γ, n) 7−→ m◦γ◦n = χα(m).γ.n,

for all m,n ∈M,γ ∈ Γ.
Proposition 3.8. Let (M,+, .) be a Γ-module over Γ-ring R and ν be
a nonzero fuzzy Γ-semigroup on M . Let µ and ρ be two nonzero fuzzy
Γ-semigroups on R. For r ∈ R, a, b ∈ M and γ ∈ Γ, define a fuzzy Γ-
hyperoperation � on M by

(r � γ � a)(t) =

{
µ(r) ∧ ρ(γ) ∧ ν(a), if t = r.γ.a

0 , otherwise.

Also, a ⊕ b = χ{a+b}. It is easy to verify that (M,⊕,�) is a fuzzy Γ-
hypermodule.
Let S,Γ be nonempty sets, and S endowed with a fuzzy Γ-hyperoperation ◦.
For all a, b ∈ S, γ ∈ Γ and p ∈ [0, 1] consider the p-cuts:

(a ◦ γ ◦ b)p = {t ∈ S : (a ◦ γ ◦ b)(t) ≥ p}

of a ◦ γ ◦ b, where p ∈ [0, 1].
For all p ∈ [0, 1], we define the following crisp Γ-hyperoperation on S:

a ◦p γ ◦p b = (a ◦ γ ◦ b)p.

Example 3.9. Let R = Γ = Z and M = Zn for n ∈ N. Define following
fuzzy Γ-hyperoperations for all a, b ∈M,γ ∈ Γ:

a⊕ b = χ{a,b},∀a ∈M,∀r ∈ R, γ ∈ Γ,
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r � γ � a = χ{rγa}, ∀r, s ∈ R, ∀γ ∈ Γ,

r.γ.s = χ{rγs} and r + s = χ{r,s}, for all α, β ∈ Γ,

and

α� β = χ{α,β},

such that x is denote a typical element in Zn. Then it is easy to verify that
(M,⊕,�) is a fuzzy Γ-hypermodule over fuzzy Γ-hyperring R and canonical
fuzzy hypergroup (Γ,�).
Proposition 3.10. Let (M, ◦) be a fuzzy Γ-hyperoperation. For all a, b, c, u ∈
M and α, β ∈ Γ and for all p ∈ [0, 1] the following equivalence holds:

(a ◦ α ◦ (b ◦ β ◦ c)) ≥ p⇐⇒ u ∈ a ◦p α ◦p (b ◦p β ◦p c).
((a ◦ α ◦ b) ◦ β ◦ c) ≥ p⇐⇒ u ∈ (a ◦p α ◦p b) ◦p β ◦p c.)

Proof. Clearly,

(a ◦ α ◦ (b ◦ β ◦ c))(u) =
∨
t∈M

(a ◦ α ◦ t)(u) ∧ (b ◦ β ◦ c)(t) ≥ p,

if and only if there exists t0 ∈ M , such that (a ◦ α ◦ t0)(u) ≥ p and
(b◦β ◦c)(t0) ≥ p, which means that u ∈ a◦pα◦p t0, t0 ∈ b◦pβ ◦p c. Therefore,
u ∈ a ◦p α ◦p (b ◦p β ◦p c).2
Proposition 3.11. Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy
Γ-hyperring (R,�,�). Then for all a ∈ M, r ∈ R, γ ∈ Γ, conditions are
equivalence:
(1) a⊕M = χM ⇐⇒ ∀p ∈ [0, 1], a⊕P M = M ;
(2) r � γ �M = χM ⇐⇒ ∀p ∈ [0, 1], r �p γ �pM = M.
Proof. We only proof (2). Let r � γ �M = χM . Then for all t ∈ M and
p ∈ [0, 1], we have

∨
u∈M(r� γ � u)(t) = 1 ≥ p, whence there exists m ∈M ,

such that (r � γ � m)(t) ≥ p, which means that t ∈ r �p γ �p m. Hence,
∀p ∈ [0, 1], r�pγ�pM = M . Conversely, for p = 1 we have r�1γ�1M = M ,
whence for all t ∈ M , there exists u ∈ M , such that t ∈ r �1 γ �1 u, which
means that (r � γ � u)(t) = 1. In other words, r � γ �M = χM .2
Proposition 3.12. The structure (M,⊕,�) is a fuzzy Γ-hypermodule over
a fuzzy Γ-hyperring (R,�,�) if and only if ∀p ∈ [0, 1], (M,⊕p,�p) is a
Γ-hypermodule over the hyperring (R,�p,�p).
Proof. It is straightforward.2
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Consider (M,⊕,�) as a fuzzy Γ-hypermodule over a fuzzy Γ-hyperring (R,�,�)
and canonical fuzzy hypergroup (Γ,⊗). Now we follow [8], and define a new
types of Γ-hyperoperations on M,R,Γ, as follows:

∀a, b ∈M, a+ b = {x ∈M |(a⊕ b)(x) > 0}, ∀r, s ∈ R,

r ] s = {t ∈ R | (r � s)(t) > 0}, forallα, β ∈ Γ,

α ∗ β = {γ ∈ Γ | (α ∗ β)(γ) > 0}, ∀a ∈M, ∀r ∈ R, ∀γ ∈ Γ,

r.γ.a = {b ∈M | (r � γ � a)(b) > 0}, ∀r, s ∈ R, ∀γ ∈ Γ,

r ◦ γ ◦ s = {t ∈ R | (r � γ � s)(t) > 0}.

Proposition 3.13. If (M,⊕,�) is a fuzzy Γ-hypermodule over a fuzzy Γ-
hyperring (R,�,�) and canonical fuzzy hypergroup (Γ,⊗), then (M,+, .)
is a Γ-hypermodule over the Γ-hyperring (R,], ◦) and canonical hypergroup
(Γ, ?).

Proof. By [10], it is obtained that (R,]), (Γ, ∗) and (M,+) are canonical
hypergroups. It is sufficient to verify (M, .) is a Γ-hypermodule. We consider
the following cases:

Case: (i)

(r ] s).γ.a = (r.γ.a) + (s.γ.a), for all r, s ∈ R, γ ∈ Γ, a ∈M.

Suppose that x ∈ (r ] s).γ.a =
⋃
y∈r]s y � γ � a. Then (y � γ � a)(x) > 0

and (r � s)(y) > 0, for some y ∈ r ] s, and hence ∨p∈M ((r � s)(p) ∧
(p � γ � a)(x) > 0. Thus ((r � s) � γ � a)(x) > 0, which implies that
((r � γ � a) ⊕ (s � γ � a))(x) > 0. Thus there exist z, t ∈ M , such that
(z⊕t)(x) > 0, (r�γ�a)(z) > 0 and (s�γ�a)(t) > 0 i.e., x ∈ z+t, z ∈ r.γ.a
and t ∈ s.γ.a and hence x ∈ (r.γ.a) + (s.γ.a). Therefore, (r ] s).γ.a ⊆
(r.γ.a) + (s.γ.a). Similarly, we can show that (r.γ.a) + (s.γ.a)t ⊆ (r ] s).γ.a.
Therefore, (r ] s).γ.a = (r.γ.a) + (s.γ.a). The other conditions are verified
similarly and omitted. 2
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On the other hands, if (M,+, .) is a Γ-hypermodule over a Γ-hyperring
(R,], ◦), then we define the following fuzzy Γ-hyperoperations:

a⊕ b = χ{a+b},∀a, b ∈M, r � s

= χ{r]s},∀r, s ∈ R, γ ∈ Γ, r � γ � a
= χ{r.γ.a},∀a ∈M, r ∈ R, r � γ � s
= χ{r◦γ◦s},∀r, s ∈ R, ∀γ ∈ Γ, β

= χ{α∗β}∀α, β ∈ Γ, α⊗ β.

The next result is immediately follows from above discussion and [14].
Proposition 3.14. For every hypergroup (M,+), there is an associated
fuzzy hypergroup.
Proposition 3.15. Let (M,+, .) be a Γ-hypermodule over a Γ-hyperring.
Let (R,], ◦) be a canonical hypergroup (Γ, ?). Then (M,⊕,�) is a fuzzy Γ-
hypermodule over a fuzzy Γ-hyperring (R,�,�) and canonical fuzzy hyper-
group (Γ,⊗), where the fuzzy hyperoperations ⊕,�,�,� and ⊗ are defined
above.
Proof. By Proposition 3.14, (M,⊕) is a commutative fuzzy Γ-hypergroup.
We show that (M,⊕) is canonical. Since (M,+) is canonical Γ-hypergroup,
then there exists e ∈ M, ∀a ∈ M, a = e + a = a + e =⇒ (e ⊕ a)(a) =
χ{e+a}(a) > 0, (a ⊕ e)(a) = χ{e+a}(a) > 0 and because for all a ∈ M there
exists b ∈M , such that e ∈ a+ b ∩ b+ a, b) is the inverse of a with respect
to +). Then

(a⊕ b)(e) = χ{a+b}(e) = χ{b+a}(e) = (b⊕ a)(e) > 0.

Let (a⊕ x)(y) = χ{a+x}(y) > 0 =⇒ y ∈ a+ x =⇒ ∃ b ( the inverse of
a such that x ∈ b+ y =⇒ (b⊕ y)(x) = χ{b+y}(x) > 0. The other cases is can
be proved in a similar way and omitted. Then (M,⊕) is a canonical fuzzy
Γ-hypergroup. Now, we show that (M,⊕,�) is a fuzzy Γ-hypermodule. We
investigate only the condition (iv) of Definition 3.4.
First , we show that that for all r, s ∈ R,α, β ∈ Γ, a ∈M , we have

(r � α� (s� β � a)) = (r � α� s)� β � a, ∀t ∈M.

Then

(r � α� (s� β � a))(t) =
∨
p∈M

,

[(r � α� p)(t) ∧ (s� β � a)(p)] =
∨
p∈M

[χr.α.p(t) ∧ χs.βa(p)] =
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{
1, t ∈ r.α.(s.β.a)
0, otherwise

=

{
1, t ∈ (r.α.s).β.a
0, otherwise

= ((r � α� s)� β � a)(t), for all t ∈M .
It is easy to verify that the other conditions of Definition 3.4 can be

obtained in a similar way.2
Proposition 3.16. Let M an RΓ-module and µ be a fuzzy Γ-module of M .
Then the set M will be a fuzzy Γ-hypermodule.
Proof. Let (Γ, ∗) be an abelian group and (M,+, .) be a Γ-module over
Γ-ring (R,], ◦). We define fuzzy Γ-hyperoperations on M as follows:

(a⊕ b)(t) = χ{a+b}, (r � γ � a)(t) = µ(r.γ.a− t),

(α⊗ β)(γ) = χ{α∗β}(γ) = χ{r]s}r � s)(z)(r � α� s)(z) = χ{r◦α◦s}(z),

∀a, b, t ∈M, r, s, z ∈ R,α, β, γ ∈ Γ.
It is easy to verify that (M,⊕) is a canonical fuzzy hypergroup. Now, we

show (M,⊕,�) is a fuzzy Γ-hypermodule with µ(0) = 1.
(i)

((r � s)� γ � a)(t) = ∨p∈R(r � s)(p) ∧ (p� γ � a)(t)

= ∨p∈Rχr]s(p) ∧ µ(p.γ.a− t)
= µ((r ] s).γ.a− t) if p = r ] s.

Also, ((r � γ � a)⊕ (s� γ � a))(t) =

= ∨p,q∈M(r � γ � a)(p) ∧ (p⊕ q)(t) ∧ (s� γ � a)(q)

= ∨p,q∈Mµ(r.γ.a− p) ∧ χ{p+q}(t) ∧ µ(s.γ.a− q)
= ∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(s.γ.a− q)
≤ µ(r.γ.a− p+ s.γ.a− q)
= µ((r ] s).γ.a− (p+ q)),

On the other hands, if q = s.γ.a, p = t− s.γ.a., then

∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(r.γ.a− q) ≥ ∨p∈Mµ(r.γ.a− p)
≥ µ(r.γ.a− t+ s.γ.a)

= µ((r ] s).γ.q − t).

(ii)

(r � (α⊗ β)� a)(t) = ∨γ∈Γ[(r � γ � a)(t) ∧ (α⊗ β)(γ)]

= ∨µ(r.γ.a− t) ∧ χ{α∗β}(γ)

= µ(r.(α ∗ β).a− t).
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Also, ((r � α� a)⊕ (r � β � a))(t) =

= ∨p,q∈M [(r � α� a)(p) ∧ (p⊕ q)(t) ∧ (r � β � a)(q)

= ∨p,q∈M [µ(r.α.a− p) ∧ χ{p+q}(t) ∧ µ(r.β.a− q)]
= ∨t=p+q µ(r.α.a− p) ∧ µ(r.βa− q)
≤ µ(r.αa− p+ r.βa− q)
= µ(r.(α ∗ β).a− (p+ q)).

On the other hands, suppose that q = r.β.a, then for p = t − r.β.a we
have

∨t=p+qµ(r.α.a− p) ∧ µ(r.βa− q) = ∨p∈Mµ(r.αa− p)
≥ µ(r.αa− (t− rβa))

= µ(r.(α ∗ β).a− (p+ q)),

(iii)

r � γ � (a⊕ b) = ∨p∈M(r � γ � p)(t) ∧ (a⊕ b)(p)
= ∨p∈Mµ(r.γ.p− t) ∧ χ{a+b}(p)

= µ(r.γ.(a+ b)− t) and ((r � γ � a)⊕ (r � γ � b))(t)
= ∨p,q∈M(r � γ � a)(p) ∧ (p⊕ q)(t) ∧ (r � γ � b)(q)
= ∨p,q∈Mµ(r.γ.a− p) ∧ χ{p+q}(t) ∧ µ(r.γ.b− q)
= ∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(r.γ.b− q)
≤ µ(r.γ.a− p+ r.γ.b− q) = µ(r.γ.(a+ b)− t).

On the other hands, for q = r.γ.b, p = t− r.γ.b. we have

∨p,q∈M,t=p+qµ(r.γ.a− p) ∧ µ(r.γ.b− q)
≥ ∨p∈Mµ(r.γ.a− p)
≥ µ(r.γ(a+ b)− t).

(iv)

(r � α� (s� β � a))(t) = ∨p∈M(r � α� p)(t) ∧ (s� β � a)(p)

= ∨p∈Mµ((r.α.p)− t) ∧ µ((s.β.a)− p)
= µ(r.α.(s.β.a)− t), and ((r � α� s)� β � a)(t)

= ∨p∈R(r � α� s)(p) ∧ (p� β � a)(t)

= ∨p∈Rχ{r◦α◦s}(p) ∧ µ(p.β.a− t)
= µ(r ◦ α ◦ s · (β · a)− t) if p = r ◦ α ◦ s.
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2

Remark. Let H = 〈H, (βi : i ∈ I)〉 be a fuzzy hyperalgebra. Denote by
F ∗(H) the set of the nonzero fuzzy subsets of H. Then H can be organized
as a universal algebra under the following operations:

βi(µ1, ..., µni
)(t) =

∨
(x1,...,xni )∈Hni

[(µ1(x1)
∧

...µni
(xni

)
∧

βi(x1, ..., xni
)(t))],

for every i ∈ I, µ1, ..., µni
∈ F ∗ (H) and t ∈ H. We denote this algebra

by F ∗(H).
Proposition 3.17. If (M,⊕,♦) is a fuzzy Γ-hypermodule, then (F ∗(M), ∗,©)
is a Γ-module.
Proof. We define operations ∗,♦ on F ∗(M) by µ∗ν = µ⊕ν, and r♦γ♦µ =
r�γ�µ for all µ, ν ∈ F ∗(M), r ∈ R, γ ∈ Γ. It is easy to see that (F ∗(M), ∗)
is a group. Clearly, (F ∗(M),⊕) is a semigroup.

(i) Identity: we must prove that there exists a ν ∈ F ∗(M) such that
,µ ∗ ν = µ. We have

(µ ∗ ν)(t) = (µ⊕ ν)(t)

= ∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ ν(q)

= ∨p∈Mµ(p) ∧ (p⊕ e)(t)
= µ(t)⊕ if

q = e; ν(q) = 1, p = t.

Thus it is enough we choose ν = χe.
(ii) Inverse: it must prove that for µ ∈ F ∗(M), there exists a ν ∈ F ∗(M),
such that µ ∗ ν = χe. It is sufficient to consider ν = −µ, then we have

(µ ∗ ν)(t) = (µ⊕ ν)(t)

= ∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ (−µ)(q)

= ∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ µ(−q)
≤ µ(p− (−q)) ∧ (p⊕ q)(t) ≤ (p⊕ q)(t)
= χe(t) where, p is inverse of q.

On the other hands, we have

∨p,q∈Mµ(p) ∧ (p⊕ q)(t) ∧ µ(−q) ≥ ∨p∈Mµ(p) ∧ (p⊕−p)(t)
≥ (p⊕−p)(t)
= χe(t).
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Other cases are easy and omitted. 2

Definition 3.18. Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy
Γ-hyperring (R,�,�). A nonempty subset N of M is called a subfuzzy Γ-
hypermodule if for all x, y ∈ N, r ∈ R and γ ∈ Γ, the following conditions
hold:
(1) (x⊕ y)(t) > 0 ⇒ t ∈ N ;
(2) x⊕N = χN ;
(3) (r � γ � x)(t) > 0 ⇒ t ∈ N .
Proposition 3.19. (i) If (N,⊕,�) is a subfuzzy Γ-hypermodule of (M,⊕,�)
over a fuzzy Γ-hyperring (R,�,�), then the associated Γ-hypermodule (N,+, .)
is a Γ-hypersubmodule of (M,+, .) over (R,], ◦);
(ii) (N,+, .) is a Γ-hypersubmodule of (M,+, .) over (R,], ◦) if and only if
(N,⊕,�) is a subfuzzy Γ-hypermodule of (M,⊕,�) over (R,�,�).

4 Fundamental Relation of Fuzzy

Γ-hypermodule

In [14], fuzzy regular relations are introduced in the context of fuzzy hyper-
semigroups. In this section we extend this notion to fuzzy Γ-hypermodules.
Let ρ be an equivalence relation on a fuzzy Γ-hypersemigroup (M, ◦) and
µ, ν be two fuzzy subsets on M . We say that µρν if the following conditions
hold:
(1) if µ(a) > 0, then there exists b ∈M , such that ν(b) > 0 and aρb and;
(2) if ν(x) > 0, then there exists y ∈M , such that µ(y) > 0 and xρy.
An equivalence relation ρ on a fuzzy Γ-hypersemigroup (M, ◦) is called a
fuzzy regular relation (or fuzzy hypercongruence) on (M, ◦) if, for all a, b, c ∈
M,γ ∈ Γ, the following implication holds:

aρb =⇒ (a ◦ γ ◦ c) ρ (b ◦ γ ◦ c) and (c ◦ γ ◦ a) ρ (c ◦ γ ◦ b).

This condition is equivalent to

aρa′, bρb′ ⇒ (a ◦ γ ◦ b)ρ(a′ ◦ γ ◦ b′),∀a, b, a′, b′ ∈M,γ ∈ Γ.

Definition 4.1. An equivalence relation ρ on a fuzzy Γ-hypermodule (M,⊕,�)
over a fuzzy Γ-hyperring (R,�,�) and a canonical fuzzy hypergroup (Γ,⊗)
is called a fuzzy regular relation on (M,⊕,�) if it is a fuzzy regular relation
on (M,⊕) and for all x, y ∈M, r ∈ R, γ ∈ Γ, the following implication holds:

xρy =⇒ (r � γ � x)ρ(r � γ � y).
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Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy Γ-hyperring (R,�,�)
and a canonical fuzzy hypergroup (Γ,⊗). Suppose (M,+, .) is the associated
Γ-hypermodule over the Γ-hyperring (R,], ◦) and the canonical hypergroup
(Γ, ∗). Then we have the next result.
Theorem 4.2. An equivalence relation ρ is a fuzzy regular relation on
(M,⊕,�) over a fuzzy Γ-hyperring (R,�,�) and canonical fuzzy hypergroup
(Γ,⊗) if and only if ρ is a regular relation on (M,+, .) over the Γ-hyperring
(R,], ◦) and canonical hypergroup (Γ, ∗).
Proof. Letting xρy and x′ρy′, where x, x′, y, y′ ∈M . We have (x⊕x′)ρ(y+y′)
if and only if the following conditions hold:

(x⊕ x′)(u) > 0,⇒ ∃v ∈M : (y ⊕ y′)(v) > 0 and uρv,

and

(y ⊕ y′)(t) > 0 ⇒ ∃w ∈M : (x⊕ x′)(w) > 0 and atρw.

These are equivalent to:
if u ∈ x+ x′, then there exists v ∈ y + y′, such that uρv;
if t ∈ y + y′, then there exists w ∈ x+ x′, such that tρw;
which mean that (x+ x′)ρ̄(y+ y′). Hence ρ is fuzzy regular on (M,⊕) if and
only if ρ is regular on (M,+).
On the other hands, if xρy and r ∈ R, γ ∈ Γ. We have (r�γ�x)ρ(r�γ�y)
if and only if the next conditions hold:
if (r � γ � x)(u) > 0, then there exists v ∈ M , such that (r � γ � y)(v) > 0
and uρv;
if (r � γ � y)(t) > 0, then there exists w ∈M , such that (r � γ � x)(w) > 0
and tρw.
These are equivalent to:
if u ∈ r.γ.x, then there exists v ∈ r.γ.y, such that uρv;
if t ∈ r.γ.y, then there exists w ∈ r.γ.x, such that tρw;
which means that (r.γ.x)ρ(r.γ.y).2
Definition 4.3. An equivalence relation ρ on a fuzzy Γ-hypersemigroup
(M, ◦) is called a fuzzy strongly regular relation on (M, ◦) if, for all a, a′, b, b′

of M and for all γ ∈ Γ, such that aρb and a′ρb′, the following condition holds:

(a ◦ γ ◦ c)(x) > 0, (b ◦ γ ◦ d)(y) > 0 ⇒ xρy,

for all x, y ∈M . Note that if ρ is a fuzzy strongly relation on a fuzzy Γ-
hypersemigroup (M, ◦), then it is a fuzzy regular on (M, ◦). An equivalence
relation ρ on a fuzzy Γ-hyperring (R,�,�) is called a fuzzy strongly regular
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relation on (R,�,�) if it is a fuzzy strongly regular relation both on (R,�)
and on (R,�).

Definition 4.4. Let ρ be a fuzzy strongly regular relation on a fuzzy Γ-
hyperring (R,�,�) and θ be a fuzzy strongly regular relation on a canon-
ical fuzzy Γ-hypergroup (Γ, ∗). An equivalence relation δ on a fuzzy Γ-
hypermodule (M,⊕,�) over a fuzzy Γ-hyperring (R,�,�) and canonical
fuzzy Γ-hypergroup (Γ,⊗) is called a fuzzy strongly regular relation on (M,⊕,�)
if it is a fuzzy strongly regular relation on (M,⊕) and if xδy, rρs and αθβ,
then the next condition holds:

for all u ∈ M , such that (r � α � x)(u) > 0 and for all v ∈ M , such that
(s� β � y)(v) > 0, we have uδv.

Theorem 4.5. An equivalence relation δ is a fuzzy strongly regular relation
on (M,⊕,�) if and only if δ is a strongly regular relation on (M,+, .).

Proof. Set xδy and x′δy′, where x, x′, y, y′ ∈M and set rρs, where r, s ∈ R
and αθβ, where α, β ∈ Γ. The relation δ is strongly regular on (M,⊕,�) if
and only if the following conditions are satisfied:

∀u ∈ M , such that (x ⊕ x′)(u) > 0 and ∀v ∈ M , such that (y ⊕ y′)(v) > 0,
we have uδv;

∀t ∈M , such that (r�α�x)(t) > 0 and ∀w ∈M , such that (s�β�y)(w) > 0,
we have tδw.

These conditions are equivalent to the following ones:

∀u ∈ M , such that u ∈ x + x′ and ∀v ∈ M , such that v ∈ y + y′, we have
uδv;

∀t ∈M , such that t ∈ r.α.x and ∀w ∈M , such that w ∈ s.β.y, we have tδw,

which mean that (x + x′)¯̄δ(y + y′) and (r.α.x)¯̄δ(s.β.y). Hence δ is strongly
regular on (M,⊕,�) if and only if δ is strongly regular on (M,+, .).

Now, Let δ be a fuzzy regular relation on a fuzzy Γ-hypermodule (M,⊕,�)
over a fuzzy Γ-hyperring (R,�,�) and canonical fuzzy Γ-hypergroup (Γ,⊗)
and ρ, θ be fuzzy strongly regular relations on the Γ-hyperring (R,�,�) and
canonical fuzzy Γ-hypergroup. (Γ,⊗).

We consider the following Γ-hyperoperations on the quotient set M/δ:

x̄ ? ȳ = {z̄ | z ∈ x+ y} = {z̄ | (x⊕ y)(z) > 0},

r̄ } ᾱ} x̄ = {z̄ | z ∈ r.α.x} = {z̄ | (r � α� x)(z) > 0}.

Theorem 4.6. Let (M,⊕,�) be a fuzzy Γ-hypermodule over a fuzzy Γ-
hyperring (R,�,�) and canonical fuzzy hypergroup (Γ, ∗). Let (M,+, .) be
the associated Γ-hypermodule over the corresponding Γ-hypergroup (R,], ◦)
and canonical hypergroup (Γ, ∗). Then we have:
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(i) The relation δ is a fuzzy regular relation on (M,⊕,�) if and only if
(M/δ, ?,}) is a Γ-hypermodule over (R,], ◦) and (Γ, ∗).
(ii) The relation δ is a fuzzy strongly regular relation on (M,⊕,�) over
(R,�,�) and (Γ,⊗) if and only if (M/δ, ?,}) is a Γ-module over R/ρ and
Γ/θ.
If we denote by U the set of all expressions consisting of finite fuzzy Γ-
hyperoperations either onR,Γ andM or the external fuzzy Γ-hyperoperations
applied on finite sets of elements of R,Γ and M , then we have
xεy ⇐⇒ ∃u ∈ U : {x, y} ⊂ u.
Now, we introduced fundamental relation on fuzzy Γ-hypemodules.
Definition 4.7. An equivalence relation ε∗ is called fundamental relation
on a fuzzy Γ-hypermodule (M,⊕,�) if ε∗ is fundamental relation on the
associated Γ-hypermodule (M,+, .).
Hence, ε∗ is fundamental relation on a fuzzy Γ-hypermodule (M,⊕,�) if and
only if ε∗ is the smallest fuzzy strongly equivalence relation on (M,⊕,�).
Denote by UF the set of all expressions consisting of finite fuzzy Γ-hyperoperations
either on R,Γ and M or the external fuzzy Γ-hyperoperation applied on finite
sets of elements of R,Γ and M . We obtain

xεy ⇐⇒ ∃ µf ∈ UF : {x, y} ⊆ µfγ ⇐⇒ µfγ(x) > 0 and µfγ(y) > 0.

The relation ε∗ is the transitive closure of ε.
Denote by

∑∗
⊕ any finite fuzzy hypersum and by

∏∗
� any finite fuzzy Γ-

hyperproduct of the fuzzy Γ-hypemodule (M,⊕,�). As above, we obtain
that

(
∑∗

i⊕
∏∗

j � aji)(p) > 0 if and only if p ∈
∑∗

i⊕
∏∗

j� aji.

Hence, {x, y} ⊂
∑∗

i⊕
∏∗

j � aji if and only if (
∑∗

i⊕
∏∗

j � aji)(x) > 0 and

(
∑∗

i⊕
∏∗

j � aji)(y) > 0. Therefore, we obtain xεy ⇐⇒ ∃µfγ ∈ UF such that
µfγ(x) > 0 and µfγ(y) > 0.
So, in order to obtain a fuzzy Γ-module starting from a fuzzy Γ-hypermodule,
we consider first the relation ε, then the transitive closure ε∗ of ε and finally
the quotient structure (M/ε∗, ?,}) of the fuzzy Γ-hypermodule (M,⊕,�).
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