Gamma Modules

R. Ameri, R. Sadeghi

Department of Mathematics, Faculty of Basic Science University of Mazandaran, Babolsar, Iran *e-mail: ameri@umz.ac.ir*

Abstract

Let R be a Γ -ring. We introduce the notion of gamma modules over R and study important properties of such modules. In this regards we study submodules and homomorphism of gamma modules and give related basic results of gamma modules.

Keywords: Γ -ring, R_{Γ} -module, Submodule, Homomorphism.

1 Introduction

The notion of a Γ -ring was introduced by N. Nobusawa in [6]. Recently, W.E. Barnes [2], J. Luh [5], W.E. Coppage studied the structure of Γ -rings and obtained various generalization analogous of corresponding parts in ring theory. In this paper we extend the concepts of module from the category of rings to the category of R_{Γ} -modules over Γ -rings. Indeed we show that the notion of a gamma module is a generalization of a Γ -ring as well as a module over a ring, in fact we show that many, but not all, of the results in the theory of modules are also valid for R_{Γ} -modules. In Section 2, some definitions and results of $\Gamma - ring$ which will be used in the sequel are given. In Section 3, the notion of a Γ -module M over a $\Gamma - ring R$ is given and by many example it is shown that the class of Γ -modules is very wide, in fact it is shown that the notion of a Γ -module is a generalization of an ordinary module and a $\Gamma - ring$. In Section 3, we study the submodules of a given Γ -module. In particular, we that L(M), the set of all submodules of a Γ -module M constitute a complete lattice. In Section 3, homomorphisms of Γ -modules are studied and the well known homomorphisms (isomorphisms) theorems of modules extended for Γ -modules. Also, the behavior of Γ -submodules under homomorphisms are investigated.

2 Preliminaries

Recall that for additive abelian groups R and Γ we say that R is a Γ - ring if there exists a mapping

$$: R \times \Gamma \times R \longrightarrow R$$
$$(r, \gamma, r') \longmapsto r\gamma r'$$

such that for every $a, b, c \in R$ and $\alpha, \beta \in \Gamma$, the following hold:

- (i) $(a+b)\alpha c = a\alpha c + b\alpha c;$
 - $a(\alpha + \beta)c = a\alpha c + a\beta c;$ $a\alpha(b + c) = a\alpha b + a\alpha c;$

(*ii*)
$$(a\alpha b)\beta c = a\alpha (b\beta c)$$
.

A subset A of a Γ -ring R is said to be a *right ideal* of R if A is an additive subgroup of R and $A\Gamma R \subseteq A$, where $A\Gamma R = \{a\alpha c | a \in A, \alpha \in \Gamma, r \in R\}$.

A *left ideal* of R is defined in a similar way. If A is both right and left ideal, we say that A is an *ideal* of R.

If R and S are Γ -rings. A pair (θ, φ) of maps from R into S such that i) $\theta(x+y) = \theta(x) + \theta(y)$;

ii) φ is an isomorphism on Γ ;

 $iii) \ \theta(x\gamma y) = \theta(x)\varphi(\gamma)\theta(y).$

is called a *homomorphism* from R into S.

3 R_{Γ} -Modules

In this section we introduce and study the notion of modules over a fixed Γ -ring.

Definition 3.1. Let R be a Γ -ring. A (left) R_{Γ} -module is an additive abelian group M together with a mapping $: : R \times \Gamma \times M \longrightarrow M$ (the image of (r, γ, m) being denoted by $r\gamma m$), such that for all $m, m_1, m_2 \in M$ and $\gamma, \gamma_1, \gamma_2 \in \Gamma, r, r_1, r_2 \in R$ the following hold:

 $(M_1) \quad r\gamma(m_1 + m_2) = r\gamma m_1 + r\gamma m_2;$

$$(M_2) \quad (r_1 + r_2)\gamma m = r_1\gamma m + r_2\gamma m;$$

$$(M_3) \quad r(\gamma_1 + \gamma_2)m = r\gamma_1m + r\gamma_2m;$$

$$(M_4)$$
 $r_1\gamma_1(r_2\gamma_2m) = (r_1\gamma_1r_2)\gamma_2m.$

A right R_{Γ} – module is defined in analogous manner.

Definition 3.2. A (left) R_{Γ} -module M is *unitary* if there exist elements, say 1 in R and $\gamma_0 \in \Gamma$, such that, $1\gamma_0 m = m$ for every $m \in M$. We denote $1\gamma_0$ by 1_{γ_0} , so $1_{\gamma_0}m = m$ for all $m \in M$.

Remark 3.3. If M is a left R_{Γ} -module then it is easy to verify that $0\gamma m = r0m = r\gamma 0 = 0_M$. If R and S are Γ -rings then an $(R, S)_{\Gamma}$ -bimodule M is both a left R_{Γ} -module and right S_{Γ} -module and simultaneously such that $(r\alpha m)\beta s = r\alpha(m\beta s) \quad \forall m \in M, \forall r \in R, \forall s \in S$ and $\alpha, \beta \in \Gamma$.

In the following by many examples we illustrate the notion of gamma modules and show that the class of gamma module is very wide.

Example 3.4. If R is a Γ -ring, then every abelian group M can be made into an R_{Γ} -module with trivial module structure by defining

 $r\gamma m = 0 \quad \forall r \in R, \forall \gamma \in \Gamma, \forall m \in M.$

Example 3.5. Every Γ -ring R, is an R_{Γ} -module with $r\gamma(r, s \in R, \gamma \in \Gamma)$ being the Γ -ring structure in R, i.e. the mapping

$$: R \times \Gamma \times R \longrightarrow R.$$
$$(r, \gamma, s) \longmapsto r. \gamma. s$$

Example 3.6. Let M be a module over a ring A. Define $\ldots : A \times R \times M \longrightarrow M$, by (a, s, m) = (as)m, being the R-module structure of M. Then M is an A_A -module.

Example 3.7. Let M be an arbitrary abelian group and S be an arbitrary subring of \mathbb{Z} , the ring of integers. Then M is a \mathbb{Z}_S -module under the mapping

$$:: \mathbb{Z} \times S \times M \longrightarrow M$$
$$(n, n', x) \longmapsto nn'x$$

Example 3.8. If R is a Γ -ring and I is a left ideal of R. Then I is an R_{Γ} -module under the mapping $\ldots : R \times \Gamma \times I \longrightarrow I$ such that $(r, \gamma, a) \longmapsto r\gamma a$.

Example 3.9. Let R be an arbitrary commutative Γ -ring with identity. A polynomial in one indeterminate with coefficients in R is to be an expression $P(X) = a_n X^n + a_2 X^2 + a_1 X + a_0$ in which X is a symbol, not a variable and the set R[x] of all polynomials is then an abelian group. Now R[x] becomes to an R_{Γ} -module, under the mapping

$$: R \times \Gamma \times R[x] \longrightarrow R[x]$$
$$(r, \gamma, f(x)) \longmapsto r.\gamma.f(x) = \sum_{i=1}^{n} (r\gamma a_i) x^i.$$

Example 3.10. If R is a Γ -ring and M is an R_{Γ} -module. Set $M[x] = \{\sum_{i=0}^{n} a_i x^i \mid a_i \in M\}$. For $f(x) = \sum_{j=0}^{n} b_j x^j$ and $g(x) = \sum_{i=0}^{m} a_i x^i$, define the mapping

$$: R[x] \times \Gamma \times M[x] \longrightarrow M[x]$$
$$(g(x), \gamma, f(x)) \longmapsto g(x)\gamma f(x) = \sum_{k=1}^{m+n} (a_k \cdot \gamma \cdot b_k) x^k.$$

It is easy to verify that M[x] is an $R[x]_{\Gamma}$ -module.

Example 3.11. Let I be an ideal of a Γ -ring R. Then R/I is an R_{Γ} -module, where the mapping $: : R \times \Gamma \times R/I \longrightarrow R/I$ is defined by $(r, \gamma, r' + I) \longmapsto (r\gamma r') + I$.

Example 3.12. Let M be an R_{Γ} -module, $m \in M$. Letting $T(m) = \{t \in R \mid t\gamma m = 0 \forall \gamma \in \Gamma\}$. Then T(m) is an R_{Γ} -module.

Proposition 3.12. Let R be a Γ -ring and (M, +, .) be an R_{Γ} -module. Set $Sub(M) = \{X \mid X \subseteq M\}$, Then sub(M) is an R_{Γ} -module.

proof. Define \oplus : $(A, B) \mapsto A \oplus B$ by $A \oplus B = (A \setminus B) \cup (B \setminus A)$ for $A, B \in sub(M)$. Then $(Sub(M), \oplus)$ is an additive group with identity element \emptyset and the inverse of each element A is itself. Consider the mapping:

$$\circ: R \times \Gamma \times Sub(M) \longrightarrow sub(M)$$
$$(r, \gamma, X) \longmapsto r \circ \gamma \circ X = r\gamma X,$$

where $r\gamma X = \{r\gamma x \mid x \in X\}$. Then we have

(i)
$$r \circ \gamma \circ (X_1 \oplus X_2) = r \cdot \gamma \cdot (X_1 \oplus X_2)$$

= $r \cdot \gamma \cdot ((X_1 \setminus X_2) \cup (X_2 \setminus X_1)) = r \cdot \gamma \cdot (\{a \mid a \in (X_1 \setminus X_2) \cup (X_2 \setminus X_1)\}$
= $\{r \cdot \gamma \cdot a \mid a \in (X_1 \setminus X_2) \cup (X_2 \setminus X_1)\}.$

And

$$r \circ \gamma \circ X_1 \oplus r \circ \gamma \circ X_2 = r \cdot \gamma \cdot X_1 \oplus r \cdot \gamma \cdot X_2$$
$$= (r \cdot \gamma \cdot X_1 \backslash r \cdot \gamma \cdot X_2) \cup (r \cdot \gamma \cdot X_2 \backslash r \cdot \gamma \cdot X_1)$$

$$= \{r \cdot \gamma \cdot x \mid x \in (X_1 \setminus X_2)\} \cup \{r \cdot \gamma \cdot x \mid x \in (X_2 \setminus X_1)\}.$$

$$= \{r \cdot \gamma \cdot x \mid x \in (X_1 \setminus X_2) \cup (X_2 \setminus X_1)\}.$$
(ii) $(r_1 + r_2) \circ \gamma \circ X = (r_1 + r_2) \cdot \gamma \cdot X$

$$= \{(r_1 + r_2) \cdot \gamma \cdot x \mid x \in X\} = \{r_1 \cdot \gamma \cdot x + r_2 \cdot \gamma \cdot x \mid x \in X\}$$

$$= r_1 \cdot \gamma \cdot X + r_2 \cdot \gamma \cdot X = r_1 \circ \gamma \circ X + r_2 \circ \gamma \circ X.$$
(iii) $r \circ (\gamma_1 + \gamma_2) \circ X = r \cdot (\gamma_1 + \gamma_2) \cdot X$

$$= \{r \cdot (\gamma_1 + \gamma_2) \cdot x \mid x \in X\} = \{r \cdot \gamma_1 \cdot x + r \cdot \gamma_2 \cdot x \mid x \in X\}$$

$$= r \cdot \gamma_1 \cdot X + r \cdot \gamma_2 \cdot X = r \circ \gamma_1 \circ X + r \circ \gamma_2 \circ X.$$
(iv) $r_1 \circ \gamma_1 \circ (r_2 \circ \gamma_2 \circ X)$

$$= \{r_1 \cdot \gamma_1 \cdot (r_2 \circ \gamma_2 \circ x) \mid x \in X\}$$

$$= \{r_1 \cdot \gamma_1 \cdot (r_2 \cdot \gamma_2 \cdot x) \mid x \in X\} = \{(r_1 \cdot \gamma_1 \cdot r_2) \cdot \gamma_2 \cdot x \mid x \in X\} = (r_1 \cdot \gamma_1 \cdot r_2) \cdot \gamma_2 \cdot X.$$
Conclusing 2.12. If is Proposition 2.12, we define φ by $A \oplus B$, $\{a + b| a \in A\}$

Corollary 3.13. If in Proposition 3.12, we define \oplus by $A \oplus B = \{a + b | a \in A, b \in B\}$. Then $(Sub(M), \oplus, \circ)$ is an R_{Γ} -module.

Proposition 3.14. Let (R, \circ) and (S, \bullet) be Γ -rings. Let (M, .) be a left R_{Γ} -module and right S_{Γ} -module. Then $A = \{ \begin{pmatrix} r & m \\ 0 & s \end{pmatrix} \mid r \in R, s \in S, m \in M \}$ is a Γ -ring and A_{Γ} -module under the mappings

$$\begin{pmatrix} & \star : A \times \Gamma \times A \longrightarrow A \\ \begin{pmatrix} r & m \\ 0 & s \end{pmatrix}, \gamma, \begin{pmatrix} r_1 & m_1 \\ 0 & s_1 \end{pmatrix} \end{pmatrix} \longmapsto \begin{pmatrix} r \circ \gamma \circ r_1 & r.\gamma.m_1 + m.\gamma.s_1 \\ 0 & s \bullet \gamma \bullet s_1 \end{pmatrix}.$$

Proof. Straightforward.

Example 3.15. Let (R, \circ) be a Γ -ring. Then $R \oplus \mathbb{Z} = \{(r, s) \mid r \in R, s \in \mathbb{Z}\}$ is an left R_{Γ} -module, where \oplus addition operation is defined $(r, n) \oplus (r', n') = (r +_R r', n +_{\mathbb{Z}} n')$ and the product $\cdot : R \times \Gamma \times (R \oplus \mathbb{Z}) \longrightarrow R \oplus \mathbb{Z}$ is defined $r' \cdot \gamma \cdot (r, n) \longrightarrow (r' \circ \gamma \circ r, n)$.

Example 3.16. Let R be the set of all digraphs (A digraph is a pair (V, E) consisting of a finite set V of vertices and a subset E of $V \times V$ of edges) and define addition on Rby setting $(V_1, E_1) + (V_2, E_2) = (V_1 \cup V_2, E_1 \cup E_2)$. Obviously R is a commutative group since (\emptyset, \emptyset) is the identity element and the inverse of every element is itself. For $\Gamma \subseteq R$ consider the mapping

$$: R \times \Gamma \times R \longrightarrow R$$
$$(V_1, E_1) \cdot (V_2, E_2) \cdot (V_3, E_3) = (V_1 \cup V_2 \cup V_3, E_1 \cup E_2 \cup E_3 \cup \{V_1 \times V_2 \times V_3\}),$$

under condition

$$(\emptyset, \emptyset) = (\emptyset, \emptyset) \cdot (V_1, E_1) \cdot (V_2, E_2)(V_1, E_1) \cdot (\emptyset, \emptyset) \cdot (V_2, E_2)$$

= $(V_1, E_1) \cdot (\emptyset, \emptyset) \cdot (V_2, E_2)$
= $(V_1, E_1) \cdot (V_2, E_2) \cdot (\emptyset, \emptyset).$

It is easy to verify that R is an R_{Γ} -module.

Example 3.17. Suppose that M is an abelian group. Set $R = M_{mn}$ and $\Gamma = M_{nm}$, so by definition of multiplication matrix subset $R_{mn}^{(t)} = \{(x_{ij}) \mid x_{tj} = 0 \forall j = 1, ..., m\}$ is a right R_{Γ} -module. Also, $C_{mn}^{(k)} = \{x_{ij}\} \mid x_{ik} = 0 \forall i = 1, ..., n\}$ is a left R_{Γ} -module.

Example 3.18. Let (M, \bullet) be an R_{Γ} -module over Γ -ring (R, .) and $S = \{(a, 0) | a \in R\}$. Then $R \times M = \{(a, m) | a \in R, m \in M\}$ is an S_{Γ} -module, where addition operation is defined by $(a, m) \oplus (b, m_1) = (a +_R b, m +_M m_1)$. Obviously, $(R \times M, \oplus)$ is an additive group. Now consider the mapping

$$\circ: S \times \Gamma \times (R \times M) \longrightarrow R \times M$$
$$((a,0),\gamma,(b,m)) \longmapsto (a,0) \circ \gamma \circ (b,m) = (a.\gamma.b, a \bullet \gamma \bullet m)$$

Then it is easy to verify that $R \times M$ is an S_{Γ} -module.

Example 3.19 Let R be a Γ -ring and (M, .) be an R_{Γ} -module. Consider the mapping $\alpha : M \longrightarrow R$. Then M is an M_{Γ} -module, under the mapping

$$\circ: M \times \Gamma \times M \longrightarrow M$$
$$(m, \gamma, n) \longmapsto m \circ \gamma \circ n = (\alpha(m)).\gamma.n.$$

Example 3.20. Let (R, \cdot) and (S, \circ) be Γ - rings. Then

(i) The product $R \times S$ is a Γ - ring, under the mapping

 $((r_1, s_1), \gamma, (r_2, s_2)) \longmapsto (r_1 \cdot \gamma \cdot r_2, s_1 \circ \gamma \circ s_2).$ $(ii) \text{ For } A = \left\{ \begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix} \mid r \in R, s \in S \right\} \text{ there exists a mapping } R \times S \longrightarrow A, \text{ such that}$ $(r, s) \longrightarrow \begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix} \text{ and } A \text{ is a } \Gamma\text{- ring. Moreover, } A \text{ is an } (R \times S)_{\Gamma}\text{- module under the}$ mapping

$$(R \times S) \times \Gamma \times A \longrightarrow A ((r_1, s_1), \gamma, \begin{pmatrix} r_2 & 0 \\ 0 & s_2 \end{pmatrix}) \longrightarrow \begin{pmatrix} r_1 \cdot \gamma \cdot r_2 & 0 \\ 0 & s_1 \circ \gamma \circ s_2 \end{pmatrix}.$$

Example 3.21. Let (R, \cdot) be a Γ -ring. Then $R \times R$ is an R_{Γ} -module and $(R \times R)_{\Gamma}$ - module. Consider addition operation $(a, b) + (c, d) = (a +_R c, b +_R d)$. Then $(R \times R, +)$ is an additive group. Now define the mapping $R \times \Gamma \times (R \times R) \longmapsto R \times R$ by $(r, \gamma, (a, b)) \longmapsto (r \cdot \gamma \cdot a, r \cdot \gamma \cdot b)$ and $(R \times R) \times \Gamma \times (R \times R) \longrightarrow R \times R$ by $((a, b), \gamma, (c, d)) \longmapsto (a \cdot \gamma \cdot c + b \cdot \gamma \cdot d, a \cdot \gamma \cdot d + b \cdot \gamma \cdot c)$. Then $R \times R$ is an $(R \times R)_{\Gamma}$ - module.

4 Submodules of Gamma Modules

In this section we study submodules of gamma modules and investigate their properties. In the sequel R denotes a Γ -ring and all gamma modules are R_{Γ} -modules

Definition 4.1. Let (M, +) be an R_{Γ} -module. A nonempty subset N of (M, +) is said to be a (left) R_{Γ} -submodule of M if N is a subgroup of M and $R\Gamma N \subseteq N$, where $R\Gamma N = \{r\gamma n | \gamma \in \Gamma, r \in R, n \in N\}$, that is for all $n, n' \in N$ and for all $\gamma \in \Gamma, r \in R$; $n - n' \in N$ and $r\gamma n \in N$. In this case we write $N \leq M$.

Remark 4.2. (*i*) Clearly $\{0\}$ and M are two trivial R_{Γ} -submodules of R_{Γ} -module M, which is called trivial R_{Γ} -submodules.

(*ii*) Consider R as R_{Γ} -module. Clearly, every ideal of Γ -ring R is submodule, of R as R_{Γ} -module.

Theorem 4.3. Let M be an R_{Γ} -module. If N is a subgroup of M, then the factor group M/N is an R_{Γ} -module under the mapping $\ldots R \times \Gamma \times M/N \longrightarrow M/N$ is defined $(r, \gamma, m + N) \longmapsto (r.\gamma.m) + N.$

Proof. Straight forward.

Theorem 4.4. Let N be an R_{Γ} -submodules of M. Then every R_{Γ} -submodule of M/N is of the form K/N, where K is an R_{Γ} -submodule of M containing N.

Proof. For all $x, y \in K, x + N, y + N \in K/N$; $(x + N) - (y + N) = (x - y) + N \in K/N$, we have $x - y \in K$, and $\forall r \in R \ \forall \gamma \in \Gamma, \forall x \in K$, we have

$$r\gamma(x+N) = r\gamma x + N \in K/N \Rightarrow r\gamma x \in K.$$

Then K is a R_{Γ} -submodule M. Conversely, it is easy to verify that $N \subseteq K \leq M$ then K/N is R_{Γ} -submodule of M/N. This complete the proof. \Box

Proposition 4.5. Let M be an R_{Γ} -module and I be an ideal of R. Let X be a nonempty subset of M. Then

 $I\Gamma X = \{\sum_{i=1}^{n} a_i \gamma_i x_i \mid a_i \in Ir_{\gamma i} \in \Gamma, x_i \in X, n \in \mathbb{N}\} \text{ is an } R_{\Gamma}\text{-submodule of } M.$ **Proof.** (i) For elements $x = \sum_{i=1}^{n} a_i \alpha_i x_i$ and $y = \sum_{j=1}^{m} x_{a'_j \beta_j y_j}$ of $I\Gamma X$, we have

$$x - y = \sum_{k=1}^{m+n} b_k \gamma_k z_k \in I \Gamma X.$$

Now we consider the following cases:

Case (1): If $1 \le k \le n$, then $b_k = a_k, \gamma_k = \alpha_k, z_k = x_k$.

 $Case(2): \text{ If } n+1 \leq k \leq m+n, \text{ then } b_k = -a'_{k-n}, \gamma_k = \beta_{k-n}, z_k = y_{k-n}. \text{ Also}$ (ii) $\forall r \in R, \forall \gamma \in \Gamma, \forall a = \sum_{i=1}^n a_i \gamma_i x_i \in I\Gamma X, \text{ we have } r\gamma x = \sum_{i=1}^n r\gamma(a_i \gamma_i x_i) = \sum_{i=1}^n (r\gamma a_i) \gamma_i x_i. \text{ Thus } I\Gamma X \text{ is an } R_{\Gamma}\text{-submodule of } M. \square$

Corollary 4.6. If M is an R_{Γ} -module and S is a submodule of M. Then $R\Gamma S$ is an R_{Γ} -submodule of M.

Let $N \leq M$. Define $N : M = \{r \in R | r\gamma m \quad \forall \gamma \in \Gamma \ \forall m \in M \}.$

It is easy to see that N: M is an ideal of Γ ring R.

Theorem 4.7. Let M be an R_{Γ} -module and I be an ideal of R. If $I \subseteq (0:M)$, then M is an $(R/I)_{\Gamma}$ -module.

proof. Since R/I is Γ -ring, define the mapping $\bullet : (R/I) \times \Gamma \times M \longrightarrow M$ by

 $(r + I, \gamma, m) \longmapsto r\gamma m$. The mapping • is well-defined since $I \subseteq (0 : M)$. Now it is straight forward to see that M is an $(R/I)_{\Gamma}$ -module. \Box

Proposition 4.8. Let R be a Γ -ring, I be an ideal of R, and (M, .) be a R_{Γ} -module. Then $M/(I\Gamma M)$ is an $(R/I)_{\Gamma}$ - module.

Proof. First note that $M/(I\Gamma M)$ is an additive subgroup of M. Consider the mapping

 $\gamma \bullet (m + I\Gamma M) = r.\gamma.m + I\Gamma M$

 $) Nowitiss traight forward to see that Misan (R/I)_{\Gamma}-module. \square$

Proposition 4.9. Let M be an R_{Γ} -module and $N \leq M$, $m \in M$. Then

 $(N:m) = \{a \in R \mid a\gamma m \in N \ \forall \gamma \in \Gamma\}$ is a left ideal of R.

Proof. Obvious.

Proposition 4.10. If N and K are R_{Γ} -submodules of a R_{Γ} -module M and if A, B are nonempty subsets of M then:

(i) $A \subseteq B$ implies that $(N : B) \subseteq (N : A)$;

(*ii*)
$$(N \cap K : A) = (N : A) \cap (K : A);$$

(*iii*) $(N:A) \cap (N:B) \subseteq (N:A+B)$, moreover the equality hold if $0_M \in A \cap B$.

proof. (i) Easy.

(*ii*) By definition, if $r \in R$, then $r \in (N \cap K : A) \iff \forall a \in Ar \in (N \cap K : a) \iff \forall \gamma \in \Gamma$; $r\gamma a \in N \cap K \iff r \in (N : A) \cap K : A)$. (*iii*) If $r \in (N : A) \cap (N : B)$. Then $\forall \gamma \in \Gamma, \forall a \in A, \forall b \in B, r\gamma(a + b) \in N$ and $r \in (N : A + B)$.

Conversely, $0_M \in A + B \Longrightarrow A \cup B \subseteq A + B \Longrightarrow (N : A + B) \subseteq (N : A \cup B)$ by(i).

Again by using $A, B \subseteq A \cup B$ we have $(N : A \cup B) \subseteq (N : A) \cap (N : B)$. \Box

Definition 4.11. Let M be an R_{Γ} -module and $\emptyset \neq X \subseteq M$. Then the generated

 R_{Γ} -submodule of M, denoted by $\langle X \rangle$ is the smallest R_{Γ} -submodule of M containing

X, i.e. $\langle X \rangle = \cap \{N | N \leq M\}$, X is called the generator of $\langle X \rangle$; and $\langle X \rangle$ is

finitely generated if $|X| < \infty$. If $X = \{x_1, ..., x_n\}$ we write $\langle x_1, ..., x_n \rangle$ instead

 $\langle \{x_1, ..., x_n\} \rangle$. In particular, if $X = \{x\}$ then $\langle x \rangle$ is called the *cyclic submodule* of

M, generated by x.

Lemma 4.12. Suppose that M is an R_{Γ} -module. Then

(i) Let $\{M_i\}_{i\in I}$ be a family of R_{Γ} -submodules M. Then $\cap M_i$ is the largest

 R_{Γ} -submodule of M, such that contained in M_i , for all $i \in I$.

(*ii*) If X is a subset of M and $|X| < \infty$. Then

 $\langle X \rangle = \left\{ \sum_{i=1}^{m} n_i x_i + \sum_{j=1}^{k} r_j \gamma_j x_j | k, m \in \mathbb{N}, n_i \in \mathbb{Z}, \gamma_j \in \Gamma, r_j \in R, x_i, x_j \in X \right\} \,.$

Proof. (i) It is easy to verify that $\cap_{i \in I} M_i \subseteq M_i$ is a R_{Γ} -submodule of M. Now suppose

that $N \leq M$ and $\forall i \in I, N \subseteq M_i$, then $N \subseteq \cap M_i$.

(*ii*) Suppose that the right hand in (b) is equal to D. First, we show that D is an R_{Γ} -submodule containing X. $X \subseteq D$ and difference of two elements of D is belong to

 $D \text{ and } \forall r \in R \ \forall \gamma \in \Gamma, \forall a \in D \text{ we have }$

$$r\gamma a = r\gamma \left(\sum_{i=1}^{m} n_i x_i + \sum_{j=1}^{k} r_j \gamma_j x_j\right) = \sum_{i=1}^{m} n_i (r\gamma x_i) + \sum_{j=1}^{k} (r\gamma r_j) \gamma_j x_j \in D.$$

Also, every submodule of M containing X, clearly contains D. Thus D is the smallest

 R_{Γ} -submodules of M, containing X. Therefore $\langle X \rangle = D$. \Box

For $N, K \leq M$, set $N + K = \{n + k | n \in N, K \in K\}$. Then it is easy to see that M + Nis an R_{Γ} -submodules of M, containing both N and K. Then the next result immediately follows.

Lemma 4.13. Suppose that M is an R_{Γ} -module and $N, K \leq M$. Then N + K is the smallest submodule of M containing N and K.

Set $L(M) = \{N | N \leq M\}$. Define the binary operations \vee and \wedge on L(M) by

 $N \lor K = N + K$ and $N \land K = N \cap K$. In fact $(L(M), \lor, \land)$ is a lattice. Then the next

result immediately follows from lemmas 4.12. 4.13.

Theorem 4.13. L(M) is a complete lattice.

5 Homomorphisms Gamma Modules

In this section we study the homomorphisms of gamma modules. In particular we investigate the behavior of submodules od gamma modules under homomorphisms.

Definition 5.1. Let M and N be arbitrary R_{Γ} -modules. A mapping $f : M \longrightarrow N$ is a homomorphism of R_{Γ} -modules (or an R_{Γ} -homomorphisms) if for all $x, y \in M$ and

$$\forall r \in R, \forall \gamma \in \Gamma \text{ we have}$$

(i) $f(x+y) = f(x) + f(y);$
(ii) $f(r\gamma x) = r\gamma f(x).$

A homomorphism f is monomorphism if f is one-to-one and f is epimorphism if f is onto. f is called *isomorphism* if f is both monomorphism and epimorphism. We denote the set of all R_{Γ} -homomorphisms from M into N by $Hom_{R_{\Gamma}}(M, N)$ or shortly by $Hom_{R_{\Gamma}}(M, N)$. In particular if M = N we denote Hom(M, M) by End(M).

Remark 5.2. If $f: M \longrightarrow N$ is an R_{Γ} -homomorphism, then

 $Kerf = \{x \in M | f(x) = 0\}, Imf = \{y \in N | \exists x \in M; y = f(x)\} \text{ are } R_{\Gamma}\text{-submodules of } M.$

Example 5.3. For all R_{Γ} -modules A, B, the zero map $0 : A \longrightarrow B$ is an

 R_{Γ} -homomorphism.

Example 5.4. Let R be a Γ -ring. Fix $r_0 \in \Gamma$ and consider the mapping

 $\phi: R[x] \longrightarrow R[x]$ by $f \longmapsto f\gamma_0 x$. Then ϕ is an R_{Γ} -module homomorphism, because

 $\forall r \in R, \ \forall \gamma \in \Gamma \text{ and } \ \forall f, g \in R[x]:$ $\phi(f+g) = (f+g)\gamma_0 x = f\gamma_0 x + g\gamma_0 x = \phi(f) + \phi(g) \text{ and}$ $\phi(r\gamma f) = r\gamma f\gamma_0 x = r\gamma \phi(f).$

Example 5.5. If $N \leq M$, then the natural map $\pi : M \longrightarrow M/N$ with $\pi(x) = x + N$ is an R_{Γ} -module epimorphism with $ker\pi = N$.

Proposition 5.6. If M is unitary R_{Γ} -module and

 $End(M) = \{f : M \longrightarrow M | f \text{ is } R_{\Gamma} - homomorphism\}.$ Then M is an $End(M)_{\Gamma}$ -module.

Proof. It is well known that End(M) is an abelian group with usual addition of functions. Define the mapping

$$: End(M) \times \Gamma \times M \longrightarrow M$$
$$(f, \gamma, m) \longmapsto f(1.\gamma.m) = 1\gamma f(m),$$

where 1 is the identity map. Now it is routine to verify that M is an $End(M)_{\Gamma}$ -module. Lemma 5.7. Let $f: M \longrightarrow N$ be an R_{Γ} -homomorphism. If $M_1 \leq M$ and $N_1 \leq$. Then

(i)
$$Kerf \leq M$$
, $Imf \leq N$;
(ii) $f(M_1) \leq Imf$;
(iii) $Kerf^{-1}(N_1) \leq M$.

Example 5.8. Consider L(M) the lattice of R_{Γ} -submodules of M. We know that (L(M), +) is a monoid with the sum of submodules. Then L(M) is R_{Γ} -semimodule

under the mapping

 $.: R \times \Gamma \times T \longrightarrow T, \text{ such that } (r, \gamma, N) \longmapsto r.\gamma.N = r\gamma N = \{r\gamma n | n \in N\}.$

Example 5.9. Let $\theta : R \longrightarrow S$ be a homomorphism of Γ -rings and M be an S_{Γ} -module.

Then M is an R_{Γ} -module under the mapping $\bullet : R \times \Gamma \times M \longrightarrow M$ by

 $(r, \gamma, m) \longmapsto r \bullet \gamma \bullet m = \theta(r)$. Moreover if M is an S_{Γ} -module then M is a R_{Γ} -module for $R \subseteq S$.

Example 5.10. Let (M, .) be an R_{Γ} -module and $A \subseteq M$. Letting

 $M^A = \{f | f : A \longrightarrow M \text{ is a map}\}.$ Then M^A is an R_{Γ} -module under the mapping

$$\circ: R \times \Gamma \times M^A \longrightarrow M^A$$
 defined by $(r, \gamma, f) \longmapsto r \circ \gamma \circ f = r\gamma f(a),$

since M^A is an additive group with usual addition of maps.

Example 5.11. Let(M, .) and (N, \bullet) be R_{Γ} -modules. Then Hom(M, N) is a R_{Γ} -module, under the mapping

 $\circ: R \times \Gamma \times Hom(M, N) \longrightarrow Hom(M, N)$ $(r, \gamma, \alpha) \longmapsto r \circ \gamma \circ \alpha,$ where $(r \bullet \gamma \bullet \alpha)(m) = r\gamma\alpha)(m).$

Example 5.12. Let M be a left R_{Γ} -module and right S_{Γ} -module. If N be an

 R_{Γ} -module, then

(i) Hom(M, N) is a left S_{Γ} -module. Indeed

$$\circ: S \times \Gamma \times Hom(M, N) \longrightarrow Hom(M, N)$$
$$(s, \gamma, \alpha) \longrightarrow s \circ \gamma \circ \alpha : M \longrightarrow N$$
$$m \longmapsto \alpha(m\gamma s)$$

(*ii*) Hom(N, M) is right S_{Γ} -module under the mapping

$$\circ: Hom(N, M) \times \Gamma \times S \longrightarrow Hom(N, M)$$
$$(\alpha, \gamma, s) \longmapsto \alpha \circ \gamma \circ s: N \longrightarrow M$$
$$n \longmapsto \alpha(n).\gamma.s$$

Example 5.13. Let M be a left R_{Γ} -module and right S_{Γ} -module and $\alpha \in End(M)$ then α induces a right $S[t]_{\Gamma}$ -module structure on M with the mapping

$$\circ: M \times \Gamma \times S[t] \longrightarrow M$$
$$(m, \gamma, \sum_{i=0}^{n} s_i t^i) \longmapsto m \circ \gamma \circ (\sum_{i=0}^{n} s_i t^i) = \sum_{i=0}^{n} (m\gamma s_i) \alpha^i$$

Proposition 5.14. Let M be a R_{Γ} -module and $S \subseteq M$. Then

$$S\Gamma M = \{\sum s_i \gamma_i a_i \mid s_i \in S, a_i \in M, \gamma_i \in \Gamma\}$$
 is an R_{Γ} -submodule of M .

Proof. Consider the mapping

$$\circ: R \times \Gamma \times (S\Gamma M) \longrightarrow S\Gamma M$$
$$(r, \gamma, \sum_{i=1}^{n} s_i \gamma_i a_i) \longmapsto \sum_{i=1}^{n} s_i \gamma_i (r\gamma a_i).$$

Now it is easy to check that $S\Gamma M$ is a R_{Γ} -submodule of M.

Example 5.16. Let (R, .) be a Γ -ring. Let \mathbb{Z}_2 , the cyclic group of order 2.

For a nonempty subset A, set $Hom(R, \mathbb{B}^A) = \{f : R \longrightarrow \mathbb{B}^A\}$. Clearly $(Hom(R, \mathbb{B}^A), +)$

is an abelian group. Consider the mapping

 $\circ: R \times \Gamma \times Hom(R, \mathbb{B}^A) \longrightarrow Hom(R, \mathbb{B}^A)$ that is defined

 $(r,\gamma,f)\longmapsto r\circ\gamma\circ f,$

where $(r \circ \gamma \circ f)(s) : A \longrightarrow \mathbb{B}$ is defined by $(r \circ \gamma \circ f(s))(a) = f(s\gamma r)(a)$.

Now it is easy to check that $Hom(R, \mathbb{B}^A)$ is an Γ -ring.

Example 5.17. Let R and S be Γ -rings and $\varphi : R \longrightarrow S$ be a Γ -rings homomorphism.

Then every S_{Γ} -module M can be made into an R_{Γ} -module by defining

 $r\gamma x \ (r \in R, \gamma \in \Gamma, x \in M)$ to be $\varphi(r)\gamma x$. We says that the R_{Γ} -module structure M is given by pullback along φ .

Example 5.18. Let $\varphi : R \longrightarrow S$ be a homomorphism of Γ -rings then (S, .) is an R_{Γ} -module. Indeed

$$\circ: R \times \Gamma \times S \longrightarrow S$$
$$(r, \gamma, s) \longmapsto r \circ \gamma \circ s = \varphi(r).\gamma.s$$

Example 5.19. Let (M, +) be an R_{Γ} -module. Define the operation \circ on M by $a \oplus b = b.a$. Then (M, \oplus) is an R_{Γ} -module.

Proposition 5.20. Let R be a Γ -ring. If $f: M \longrightarrow N$ is an R_{Γ} -homomorphism and $C \leq kerf$, then there exists an unique R_{Γ} -homomorphism $\overline{f}: M/C \longrightarrow N$, such that for every $x \in M$; $Ker\overline{f} = Kerf/C$ and $Im\overline{f} = Imf$ and $\overline{f}(x+C) = f(x)$, also \overline{f} is an R_{Γ} -isomorphism if and only if f is an R_{Γ} -epimorphism and C = Kerf. In particular $M/Kerf \cong Imf$.

Proof. Let $b \in x + C$ then b = x + c for some $c \in C$, also f(b) = f(x + c). We know f is R_{Γ} -homomorphism therefore f(b) = f(x + c) = f(x) + f(c) = f(x) + 0 = f(x) (since $C \leq kerf$) then $\overline{f} : M/C \longrightarrow N$ is well defined function. Also $\forall x + C, y + C \in M/C$ and $\forall r \in R, \gamma \in \Gamma$ we have

(i)
$$\bar{f}((x+C)+(y+C)) = \bar{f}((x+y)+C) = f(x+y) = f(x) + f(y) = \bar{f}(x+C) + \bar{f}(y+C).$$

(ii) $\bar{f}(r\gamma(x+C)) = \bar{f}(r\gamma x+C) = f(r\gamma x) = r\gamma f(x) = r\gamma \bar{f}(x+C).$

then \bar{f} is a homomorphism of R_{Γ} -modules, also it is clear $Im\bar{f} = Imf$ and $\forall (x+C) \in ker\bar{f}; \ x+C \in ker\bar{f} \Leftrightarrow \bar{f}(x+C) = 0 \Leftrightarrow f(x) = 0 \Leftrightarrow x \in kerf$ then $ker\bar{f} = kerf/C.$

Then definition \bar{f} depends only f, then \bar{f} is unique. \bar{f} is epimorphism if and only if f is epimorphism. \bar{f} is monomorphism if and only if $ker\bar{f}$ be trivial R_{Γ} -submodule of M/C.

In actually if and only if Kerf = C then $M/Kerf \cong Imf.\square$

Corollary 5.21. If R is a Γ -ring and M_1 is an R_{Γ} -submodule of M and N_1 is R_{Γ} -submodule of $N, f: M \longrightarrow N$ is a R_{Γ} -homomorphism such that $f(M_1) \subseteq N_1$ then fmake a R_{Γ} -homomorphism $\overline{f}: M/M_1 \longrightarrow N/N_1$ with operation $m + M_1 \longmapsto f(m) + N_1$. \overline{f} is R_{Γ} -isomorphism if and only if $Imf + N_1 = N, f^{-1}(N_1) \subseteq M_1$. In particular, if f is epimorphism such that $f(M_1) = N_1, kerf \subseteq M_1$ then f is a R_{Γ} -isomorphism.

proof. We consider the mapping $M \longrightarrow^{f} N \longrightarrow^{\pi} N/N_{1}$. In this case; $M_{1} \subseteq f^{-1}(N_{1}) = ker\pi f \ (\forall m_{1} \in M_{1}, \ f(m_{1}) \in N_{1} \Rightarrow \pi f(m_{1}) = 0 \Rightarrow m_{1} \in ker\pi f)$. Now we use Proposition 5.20 for map $\pi f : M \longrightarrow N/N_{1}$ with function $m \longmapsto f(m) + N_{1}$ and submodule M_{1} of M.

Therefore, map $\overline{f}: M/M_1 \longrightarrow N/N_1$ that is defined $m + M \longmapsto f(m) + N_1$ is a R_{Γ} -homomorphism. It is isomorphism if and only if πf is epimorphism, $M_1 = ker\pi f$.

But condition will satisfy if and only if $Imf + N_1 = N$, $f^{-1}(N_1) \subseteq M_1$. If f is epimorphism then $N = Imf = Imf + N_1$ and if $f(M_1) = N_1$ and $kerf \subseteq M_1$ then

 $f^{-1}(N_1) \subseteq M_1$ so \bar{f} is isomorphism.

Proposition 5.22. Let B, C be R_{Γ} -submodules of M.

(i) There exists a R_{Γ} -isomorphism $B/(B \cap C) \cong (B+C)/C$.

(*ii*) If $C \subseteq B$, then B/C is an R_{Γ} -submodule of M/C and there is an R_{Γ} -isomorphism $(M/C)/(B/C) \cong M/B$.

Proof. (i) Combination $B \longrightarrow^{j} B + C \longrightarrow^{\pi} (B + C)/C$ is an R_{Γ} -homomorphism with kernel= $B \cap C$, because $ker\pi j = \{b \in B | \pi j(b) = 0_{(B+C)/C}\} = \{b \in B | \pi(b) = C\} = \{b \in B | b \in C\} = B \cap C$ therefore, in order to Proposition 5.20., $B/(B \cap C) \cong Im(\pi j)(\star)$, every element of (B + C)/C is to form (b + c) + C, thus $(b + c) + C = b + C = \pi j(b)$ then πj is epimorphism and $Im\pi j = (B + C)/C$ in attention (\star) , $B/(B \cap C) \cong (B + C)/C$.

(*ii*) We consider the identity map $i: M \longrightarrow M$, we have $i(C) \subseteq B$, then in order to

apply Proposition 5.21. we have R_{Γ} -epimorphism $\bar{i}: M/C \longrightarrow M/B$ with $\bar{i}(m+C) = m+B$ by using (i). But we know $B = \bar{i}(m+C)$ if and only if $m \in B$ thus $ker \ \bar{i} = \{m+C \in M/C | m \in B\} = B/C$ then $ker\bar{i} = B/C \leq M/C$ and we have $M/B = Im\bar{i} \cong (M/C)/(B/C).\Box$

Let M be a R_{Γ} -module and $\{N_i | i \in \Omega\}$ be a family of R_{Γ} -submodule of M. Then $\cap_{i \in \Omega} N_i$ is a R_{Γ} -submodule of M which, indeed, is the largest R_{Γ} -submodule Mcontained in each of the N_i . In particular, if A is a subset of a left R_{Γ} -moduleM then intersection of all submodules of M containing A is a R_{Γ} -submodule of M, called the submodule generated by A. If A generates all of the R_{Γ} -module, then A is a set of generators for M. A left R_{Γ} -module having a finite set of generators is finitely generated. An element m of the R_{Γ} -submodule generated by a subset A of a R_{Γ} -module

M is a *linear combination* of the elements of A.

If M is a left R_{Γ} -module then the set $\sum_{i\in\Omega} N_i$ of all finite sums of elements of N_i is an R_{Γ} -submodule of M generated by $\bigcup_{i\in\Omega} N_i$. R_{Γ} -submodule generated by $X = \bigcup_{i\in\Omega} N_i$ is

 $D = \{\sum_{i=1}^{s} r_i \gamma_i a_i + \sum_{j=1}^{t} n_j b_j | a_i, b_j \in X, r_i \in R, n_j \in \mathbb{Z}, \gamma_i \in \Gamma\} \text{ if } M \text{ is a unitary}$ $R_{\Gamma}\text{-module then } D = R\Gamma X = \{\sum_{i=1}^{s} r_i \gamma_i a_i | r_i \in R, \gamma_i \in \Gamma, a_i \in X\}.$

Example 5.23. Let M, N be R_{Γ} -modules and $f, g : M \longrightarrow N$ be R_{Γ} -module homomorphisms. Then $K = \{m \in M \mid f(m) = g(m)\}$ is R_{Γ} -submodule of M.

Example 5.24. Let M be a R_{Γ} -module and let N, N' be R_{Γ} - submodules of M. Set $A = \{m \in M \mid m + n \in N' \text{ for some } n \in N\}$ is an R_{Γ} -module of M containing N'.

Proposition 5.25. Let (M, \cdot) be an R_{Γ} - module and M generated by A. Then there exists an R_{Γ} -homomorphism $R^{(A)} \longrightarrow M$, such that $f \longmapsto \sum_{a \in A, a \in supp(f)} f(a) \cdot \gamma \cdot a$.

Remark 5.26. Let R be a Γ - ring and let $\{(M_i, o_i) | i \in \Omega\}$ be a family of left R_{Γ} modules. Then $\times_{i \in \Omega} M_i$, the Cartesian product of M_i 's also has the structure of a left R_{Γ} -module under componentwise addition and mapping

144

$$: R \times \Gamma \times (\times M_i) \longrightarrow \times M_i$$
$$(r, \gamma, \{m_i\}) \longrightarrow r \cdot \gamma \cdot \{m_i\} = \{ro_i \gamma o_i m_i\}_{\Omega}.$$

We denote this left R_{Γ} -module by $\prod_{i \in \Omega} M_i$. Similarly,

 $\sum_{i\in\Omega} M_i = \{\{m_i\} \in \prod M_i | m_i = 0 \text{ for all but finitely many indices } i\} \text{ is a}$

 R_{Γ} -submodule of $\prod_{i \in \Omega} M_i$. For each h in Ω we have canonical R_{Γ} - homomorphisms $\pi_h : \prod M_i \longrightarrow M_h$ and $\lambda_h : M_h \longrightarrow \sum M_i$ is defined respectively by $\pi_h :< m_i > \longmapsto m_h$ and $\lambda(m_h) = < u_i >$, where

$$u_i = \begin{cases} 0 & i \neq h \\ m_h & i = h \end{cases}$$

The R_{Γ} -module $\prod M_i$ is called the (external) direct product of the R_{Γ} - modules M_i and the R_{Γ} - module $\sum M_i$ is called the (external) direct sum of M_i . It is easy to verify that if M is a left R_{Γ} -module and if $\{M_i | i \in \Omega\}$ is a family of left R_{Γ} -modules such that, for each $i \in \Omega$, we are given an R_{Γ} -homomorphism $\alpha_i : M \longrightarrow M_i$ then there exists a unique R_{Γ} - homomorphism $\alpha : M \longrightarrow \prod_{i \in \Omega} M_i$ such that $\alpha_i = \alpha \pi_i$ for each $i \in \Omega$. Similarly, if we are given an R_{Γ} -homomorphism $\beta_i : M_i \longrightarrow M$ for each $i \in \Omega$ then there exists an unique R_{Γ} - homomorphism $\beta : \sum_{i \in \Omega} M_i \longrightarrow M$ such that $\beta_i = \lambda_i \beta$ for each $i \in \Omega$.

Remark 5.27. Let M be a left R_{Γ} -module. Then M is a right R_{Γ}^{op} -module under the

mapping

$$*: M \times \Gamma \times R^{op} \longrightarrow M$$
$$(m, \gamma, r) \longmapsto m * \gamma * r = r\gamma m.$$

Definition 5.28. A nonempty subset N of a left R_{Γ} -module M is subtractive if and only if $m + m' \in N$ and $m \in N$ imply that $m' \in N$ for all $m, m' \in M$. Similarly, N is strong subtractive if and only if $m + m' \in N$ implies that $m, m' \in N$ for all $m, m' \in M$. **Remark 5.29**. (i) Clearly, every submodule of a left R_{Γ} -module is subtractive. Indeed, if N is a R_{Γ} -submodule of a R_{Γ} -module M and $m \in M, n \in N$ are elements satisfying

 $m + n \in N$ then $m = (m + n) + (-n) \in N$.

(*ii*) If $N, N' \subseteq N$ are R_{Γ} -submodules of an R_{Γ} -module M, such that N' is a subtractive

 R_{Γ} -submodule of N and N is a subtractive R_{Γ} -submodule of M then N' is a subtractive

R_{Γ} -module of M.

Note. If $\{M_i | i \in \Omega\}$ is a family of (resp. strong) subtractive R_{Γ} -submodule of a left

 R_{Γ} -module M then $\bigcap_{i \in \Omega} M_i$ is again (resp. strong) subtractive. Thus every R_{Γ}

-submodule of a left R_{Γ} -module M is contained in a smallest (resp. strong) subtractive

 R_{Γ} -submodule of M, called its (resp. strong) subtractive closure in M.

Proposition 5.30 Let R be a Γ -ring and let M be a left R_{Γ} -module. If N, N' and

 $N^{\prime\prime} \leq M$ are submodules of M satisfying the conditions that N is subtractive and

 $N'\subseteq N$, then $N\cap (N'+N'')=N'+(N\cap N'').$

Proof. Let $x \in N \cap (N' + N'')$. Then we can write x = y + z, where $y \in N'$ and $z \in N''$. by $N' \subseteq N$, we have $y \in N$ and so, $z \in N$, since N is subtractive. Thus $x \in N' + (N \cap N'')$, proving that $N \cap (N' + N'') \subseteq N' + (N \cap N'')$. The reverse containment is immediate.

Proposition 5.31. If N is a subtractive R_{Γ} -submodule of a left R_{Γ} -module M and if A is a nonempty subset of M then (N : A) is a subtractive left ideal of R.

Proof. Since the intersection of an arbitrary family of subtractive left ideals of R is again subtractive, it suffices to show that (N : m) is subtractive for each element m. Let $a \in R$ and $b \in (N : M)$ (for $\gamma \in \Gamma$) satisfy the condition that $a + b \in (N : M)$. Then

 $a\gamma m + b\gamma m \in N$ and $b\gamma m \in N$ so $a\gamma m \in N$, since N is subtractive. Thus

 $a \in (N:M).\Box.$

proposition 5.32. If I is an ideal of a Γ -ring R and M is a left R_{Γ} -module. Then

 $N = \{m \in M \mid I\Gamma m = \{0\}\}$ is a subtractive R_{Γ} -submodule of M.

Proof. Clearly, N is an R_{Γ} -submodule of M. If $m, m' \in M$ satisfy the condition that m and m + m' belong to N then for each $r \in I$ and for each $\gamma \in \Gamma$ we have

 $0 = r\gamma(m + m') = r\gamma m + r\gamma m'm' = r\gamma m'$, and hence $m' \in N$. Thus N is subtractive. \Box

proposition 5.33. Let $(R, +, \cdot)$ be a Γ -ring and let M be an R_{Γ} -module and there

exists bijection function $\delta: M \longrightarrow R$. Then M is a Γ -ring and M_{Γ} -module.

Proof. Define $\circ: M \times \Gamma \times M \longrightarrow M$ by $(x, \gamma, y) \longmapsto x \circ \gamma \circ y = \delta^{-1}(\delta(x) \cdot \gamma \delta(y)).$

It is easy to verify that R is a Γ - ring. If M is a set together with a bijection function

 $\delta: X \longrightarrow R$ then the Γ -ring structure on R induces a Γ -ring structure (M, \oplus, \odot) on X

with the operations defined by $x \oplus y = \delta^{-1}(\delta(x) + \delta(y))$ and

$$x \odot \gamma \odot y = \delta^{-1}(\delta(x) \cdot \gamma \cdot \delta(y)).\square$$

Acknowledgements

The first author is partially supported by the "Research Center on Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran".

References

[1] F.W.Anderson ,K.R.Fuller , Rings and Categories of Modules, Springer Verlag ,New York ,1992. [2] W.E.Barens,On the Γ-ring of Nobusawa, Pacific J.Math.,18(1966),411-422. [3] J.S.Golan,Semirinngs and their Applications.[4] T.W.Hungerford ,Algebra.[5] J.Luh,On the theory of simple gamma rings, Michigan Math .J.,16(1969),65-75.[6] N.Nobusawa ,On a generalization of the ring theory ,Osaka J.Math. 1(1964),81-89.