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Abstract. This paper presents lower bounds on the number of parity-

check digits required for a linear code that is capable of detecting errors

which are ‘m-repeated burst errors’. Further, codes capable of detecting

and simultaneously correcting such errors have also been studied.
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1 Introduction

Many kinds of errors in coding theory have been dealt with for which codes

have been constructed to combat such errors. Apart from random errors,

one of the widely studied error is a burst error. It has been observed that

in several communication systems, errors occur predominantly in bursts.

A burst of length b may be defined as follows:

Definition 1. A burst of length b is a vector whose only non-zero

components are among some b consecutive components, the first and the

last of which is non-zero.

Stone (1961), and Bridwell and Wolf (1970) considered multiple burst

errors. Chien and Tang (1965) observed that in many channels errors occur

in the form of a burst but errors do not occur in the end digits of the burst,

e.g., channels due to Alexander, Gryb and Nast (1960) fall in this category.

The nature of burst errors differ from channel to channel depending

upon the behaviour of channels or the kind of errors which occur during

the process of transmission. Codes that detect and correct 2-repeated

open-loop bursts have been studied by Berardi, Dass and Verma (2007).

A 2-repeated burst (open-loop) of length b has been defined as follows:

Definition 2. A 2-repeated burst of length b is a vector of length n whose

only non-zero components are confined to two distinct sets of b consecutive

components, the first and the last component of each set being non-zero.

In very busy communication channels, errors repeat themselves more

frequently. In view of this, it is desirable to consider more than two repeated

bursts.
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In this paper, we define ‘m-repeated burst of length b ’ as follows:

Definition 3. An m-repeated burst of length b is a vector of length

n whose only non-zero components are confined to m distinct sets of b

consecutive components, the first and the last component of each set being

non-zero.

For example, (001020024100314030100) is a 4-repeated burst of

length 3 over GF(5).

Bounds for the detection and correction of such bursts have been

derived in this paper. In what follows, a linear code will be considered as

a subspace of the space of all n-tuples over GF(q). The distance between

two vectors shall be considered in the Hamming sense.

2 m-Repeated Burst Error Detecting Code

In this section, we consider linear codes that are capable to detect

m-repeated burst of length b or less. Clearly, the patterns to be detected

should not be code words. Firstly, we obtain a lower bound over the number

of parity-check digits for such a code.

Theorem 1. Any (n, k) linear code over GF(q) that detects any m-

repeated burst of length b or less must have atleast mb parity-check digits.

Proof. The result will be proved by showing that no detectable error vector

can be a code word.

Let V be an (n, k) linear code over GF(q). Consider a set X that

has all those vectors which have their non-zero components confined to

some m fixed distinct b consecutive components.
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We claim that no two vectors of X can belong to the same coset

of the standard array, else a code word would be expressible as a sum or

difference of two error vectors.

Assume, on the contrary, that there is a pair say x1, x2 in X

belonging to the same coset of the standard array. Then their difference

viz., x1 − x2 must be a code word. But x1 − x2 is a vector all of whose

non-zero components are confined to the same m fixed b consecutive

components and so is a member of X , i.e., x1− x2 is m-repeated burst of

length b or less, which is a contradiction.

Thus all the vectors in X must belong to distinct cosets of the

standard array. The number of such vectors overGF(q) is clearly qmb .

Also, total number of cosets in an (n, k) linear code equals qn−k , so we

must have qn−k > qmb , i.e., n− k > mb , which proves the result.

Remarks. For m = 1, this result reduces to the case of single non-repeated

bursts (refer Theorem 4.13, Peterson and Weldon (1972)).

For m = 2, this result coincides with Theorem 1 due to Berardi,

Dass and Verma (2007) when bursts considered are 2-repeated bursts of

length b or less.

3 Simultaneous Detection and Correction of

m-Repeated Burst Errors

In the following, we consider linear codes which are capable to detect and

correct simultaneously m-repeated bursts and obtain a necessary condition

over the number of parity-checks required for such a code.
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Theorem 2. Any (n, k) linear code over GF(q) that corrects m-repeated

bursts of length b or less must have at least 2mb parity-check digits.

Further, if the code corrects m-repeated bursts of length b or less and

simultaneously detects m-repeated bursts of length d or less (d > b), then

the code must have at least m(b + d) parity-check digits.

Proof. Consider a burst of length 2mb . Such a vector is expressible as

a sum or difference of two vectors each of which is m-repeated burst

of length b or less. These component vectors must belong to different

cosets of the standard array because both such errors are correctable errors.

Accordingly, such a vector viz., a burst of length 2mb or less cannot be

a code word. In view of Theorem 1, such a code must have atleast 2mb

parity-check digits.

Further, consider a burst of length m(b + d). Such a vector cannot

be a code word because it is always expressible as a sum or difference of

two vectors, one of which is m-repeated burst of length b or less and the

other is m-repeated burst of length d or less. As earlier, any pair of such

component vectors cannot belong to the same coset of the standard array

and so a burst of length m(b + d) cannot be a code word. Therefore, the

code must have atleast m(b + d) parity-check digits.

Remarks. For m = 1, this result coincides with Reiger’s bound (Reiger

(1960); also refer Theorem 4.15, Peterson and Weldon (1972)).

For m = 2, this result reduces to a result due to Berardi, Dass and

Verma (Theorem 3, (2007)) when bursts considered are 2-repeated bursts

of length b or less.
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