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Abstract  
In the present paper, majority-voting rule has been investigated for its possible 
application in cryptological sciences. A novel approach is proposed to address the 
complex identification problem of overlapping classes. The method for representing 
patterns using different measurements has been discussed and the majority voting rule is 
used to fuse the results obtained in different measurement spaces. The proposed approach 
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scheme has been implemented for three-class problem and results were tabulated and 
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1. Introduction 
 

Identification of cipher bit streams generated from different sources is the 
primary step for a cryptanalyst. It requires cipher bit stream to be 
represented in the form of a pattern vector. In the measurement space, the 
analyst can take various measurements for patterns. Based on specific 
perception and scale, patterns are represented as points in some 
multidimensional feature space. The feature space is partitioned using the 
discriminant functions made on the basis of patterns of known classes, 
referred as training/learning patterns. The performance of the discriminant 
function is measured by categorization of independent patterns, known as 
test patterns, to their own partitions. A higher percentage of correct 
classification of the patterns in the test set indicates a better discriminator.  
 
The fundamental goal of an analyst is to arrive at the highest probable 
correct classification of a given set of patterns. This objective leads to the 
design and development of different type of classifiers to solve a particular 
pattern recognition problem. Here, the accuracy in classification attained 
by different classifiers may be different. Also, the set of patterns correctly 
classified by one classifier may differ with the set of patterns correctly 
classified by another classifier. Thus, instead of searching for the best 
among the set of classifiers, it is found better to combine the decisions of 
individual classifiers. By applying a combination strategy to the set of 
classifiers such that the participating classifiers work complementary to 
each other, we are likely to get a classification rate better than that of a 
single best classifier. 
 
Various combination strategies or decision fusion techniques have been 
proposed and studied by many researchers. Lam and Suen ([1]:1997), 
Kittler, et. al. ([2]:1998), Alkoot, et. al. ([3]:1999), Kuncheva, et. al. 
([4]:2001), Chen and Cheng ([5]:2001) and Alexandre, et. al. ([6]:2001) 
etc. made a detailed study of different aspects of these combination 
strategies.  
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We first give a brief description of these fusion schemes. Let X be a 
pattern which is to be assigned to one of m possible classes w1, w2, …, wm  
with the help of anyone of M individual classifiers. Each classifier 
approximates the a posteriori probability P(wi/X), i= 1, 2, … , m, that is 
the probability that pattern X belongs to class wi, given that X was 
observed. A classifier assigns X to class wk if 
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For convenience, let we denote the a posteriori probabilities computed by 
classifier Cj by Pj(wi/X), where j = 1, 2, …, M and i = 1, 2, …, m. It is 
assumed that these estimates of a posteriori probabilities given by 
individual classifiers are independent and identically distributed according 
to some pre-assumed distribution function.  
 
Here, aim is to get improved estimates P(wi/X) by applying some 
combination rule    ‘f’  to the individual estimates Pj(wi/X) given by each 
of the M classifiers i.e. 
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Pattern X is finally allocated to class wk according to the rule (1). Thus the 
rule for decision fusion becomes 
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Some prevalent decision fusion rules are the average rule, geometric mean 
rule, maximum rule, minimum rule, median rule, and majority vote rule. 
The theoretical and experimental comparative studies about the 
performance of decision fusion approaches have been carried out by 
Kittler, et. al. ([2]:1998), Alkoot and Kittler ([3]:1999), Chen & Cheng 
([5]:2001) and Kuncheva ([7]:2002) etc., using different data sets. 
Sensitivity to estimation errors of these schemes under different 
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assumptions and different approximations has been analyzed, Kittler, et. 
al. ([2]:1998), Alkoot and Kittler ([3]:1999). It has been found that relative 
performance of various combination schemes changes under different 
conditions. The main emphasis has been given to comparison of the two 
basic schemes i.e. sum rule and product rule, Kittler, et. al. ([2]:1998), 
Alkoot and Kittler ([3]:1999), Alexandre, et. al. ([6]:2001). The sum rule 
is found easy to implement and less sensitive to errors than product rule, 
in most of the scenarios, Kittler, et. al. ([2]:1998). The product rule and 
strategies devised from it perform better when all the experts produce 
small errors. Further, the number of classifiers employed in fusion and 
number of classes in the problem also has an effect on the relative 
performance of different experts, Alkoot and Kittler ([3]:1999).  
 
In general as stated earlier, these fusion rules, with an exception of 
majority voting rule, use the probabilities obtained by different classifiers 
to take the final fused decision about the class-memberships of the 
patterns. These probabilities given by different classifiers are called soft 
decisions. On the other hand, majority-voting rule works on hard 
decisions. That is, in majority voting rule, different classifiers first give 
their respective decisions about the class-memberships called the hard 
decisions, and then the decision taken by maximum number of classifiers 
is taken as the final decision. Instead of handling the probabilities, it 
simply works on the decisions given by different classifiers and therefore, 
is easiest to implement, Lee and Srihari ([8]:1993) and Lam and Suen 
([1]:1997). And yet, experiments show that majority-voting rule is just as 
effective as other combination schemes, which are more complex in 
nature. Also, majority-voting scheme is found to be one of the schemes, 
which are relatively stable.  
 
Keeping all these facts into mind, we have chosen majority-voting scheme 
for experimentation to support our approach of fusion, which is slightly 
different from the usual approach. Let us first formulate majority-voting 
scheme mathematically. 
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In majority voting rule, the individual a posteriori probabilities Pj(wi/X) 
are used to produce hard decisions δij where  
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Then we assign the pattern X to class wk if 
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In the literature, mostly, two-class problem have been addressed with the 
help of decision fusion rules, although the rules can be implemented for 
any number of classes and any number of features representing a pattern. 
However, when the number of classes increases, the computational 
complexity also increases and the final decision may be costly for 
overlapping classes. We address this difficulty by proposing in Section 2, 
a simple and easy to implement approach, working on the basis of 
consensus of decisions taken in different representation spaces. Section 3 
presents the problem definition and a description about various 
representation spaces. Section 4 contains the algorithm and Section 5 
contains details of experimentation and results. Finally, in Section 6 we 
present our observations and conclusions. 
 
2. Proposed Approach For Classification 
 
Before discussing our approach, let us put the usual fusion approach in a 
form, which can be compared with proposed one. Let, there are m classes 
and M classifiers. As discussed before, the a posteriori probabilities pij, 
where i = 1, 2, …, M and j = 1, 2, …, m, are computed for a given pattern 
X to be classified in one of the pre-specified class.  
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Classes  
Pattern X w1 w2 … wm 

Classifier C1 p11 p12 … p1m 
Classifier C2 p21 p22 … p2m 

: 
: 

: 
: 

: 
: 

 
…

: 
: 

Classifier CM pM1 pM2 … pMm
Table 2.1 

  
The pattern X gets its class membership in class wi if a predefined 
function f as described in Section 1, gives optimum value for class wi i.e. 
 
 i    j    ),p,,p,(p   )p,,p,(p Mj2j1jMi2i1i ≠∀−−−>−−− f f  
 
Now, instead of considering different types of classifiers, we propose to 
consider different representations of same set of patterns and allow a 
single classifier to take decision about class memberships. Going this 
way, in spite of having only one classifier, one can have different probable 
decisions and can apply any of the traditional fusion schemes. Further, if 
one have only two or very few classifiers available, then there will be 
more chances of having a tie instead of having a decision due to lack of 
majority of a single decision, specially when we are going to deal a multi-
class problem. In that case, our approach presents a way to use fusion to 
have more authenticated decisions by considering many representations of 
set of patterns, according to the underlying problem.  
 
As stated before, we have chosen majority voting rule for fusion i.e. we 
accept the decision obtained in majority of the representation/feature 
spaces using a single classifier. Let we have ‘r’ representation spaces to 
observe a pattern X in ‘r’ different ways. With the help of a classifier C, 
we wish to classify X in one of the pre-specified m classes. Let pij, i = 1, 2, 
…, r and j = 1, 2, …, m be the probability for X of   membership in jth 
class, while the ith representation is used to present the pattern. First we 
convert these soft decisions into hard decisions ∆ij, by allocating one class 
wj to the pattern X in ith representation space i.e. 
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     Table 2.2(a)  
                                       
 
                                   Soft Decisions: Table2.2(a)   

 
 
 
 
 
 
 
 
 

Hard Decision: Table2.2(b) 
 

 
From the table 2.2(b), it is clear that a pattern will get its class 
membership in class wk if 
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Classes  
Classifier C  w1 w2 --- wm 

Representation X1 p11 p12 --- p1m 
Representation X2 p21 p22 --- p2m 

| 
| 

| 
| 

| 
| 

 
--- 

| 
| 

Representation Xr pr1 pr2 --- prm 

Classes  
Classifier C w1 w2 --- wm 

Representation X1 ∆11 ∆12 --- ∆1m 
Representation X2 ∆21 ∆22 --- ∆2m 

| 
| 

| 
| 

| 
| 

 
--- 

| 
| 

Representation Xr ∆r1 ∆r2 --- ∆rm 



 97

3. Problem Definition and Feature Computation 
 
In the present day communication scenario, any type of information viz. 
visual scenes, voice and text, is stored and communicated digitally. The 
authorized recipient at the other end recovers the same with precise 
accuracy and correctness. The adversary may intercept, record and 
retrieve all the plain transmission with some trial and error, using 
available means and technology. But, he will not be able to make any 
sense of it if the information is transmitted after encipherment by applying 
some cryptographic techniques. To experiment with the said problem, 
enciphered bit streams of scenes, voice and text have been generated from 
three independent stream ciphers respectively. The stream ciphers used are 
clock-controlled shift registers, Geffe generator and cascade of linear shift 
registers with nonlinear combiner. The details are described in Geffe 
([9]:1973), Rueppel ([10]:1986), Schneier ([11]:1996), Kumar ([12]:1997) 
and Menezes et. al. ([13]:1997).  
 
We consider each fixed length sample (now onwards referred as a 
message) of enciphered bit stream as a pattern. These patterns require their 
representation in pattern space as multidimensional feature vectors so that 
these can become suitable for further analysis. The process of feature 
extraction from each message to form a suitable mathematical pattern is 
like an art and this is improved by experimentation and practice.  Next, we 
will describe the procedure followed by us to extract significant feature 
vectors from these bit streams. 
 
3.1 Mathematical Representation 
  
Let us denote the samples of enciphered binary streams by Ml

k, where l = 
1, 2, 3 and k = 1, 2, …, N. In this representation, l =1 stands for encrypted 
scene, l =2 stands for encrypted voice and l =3 stands for encrypted text. 
The number of messages taken from each respective source is ‘N’. All 
messages are assumed to be of a sufficiently long length of ‘c’ bits, where 
1000 ≤ c ≤ 5000 bits usually.  From each message Ml

k, binary pattern 
word (i.e. small blocks of bits) of a suitable fixed length ‘b’ are read, 
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where b = 5 or 7 bits etc. Now, these binary words can be read from a 
message in two (overlapping and non-overlapping) ways. In overlapped 
reading, we proceed bit by bit i.e. first pattern word starts from the first bit 
of the message and second pattern word starts from the second bit of the 
message and so on. And in non-overlapped reading, we move block by 
block i.e. we divide the whole message into blocks of given pattern word 
length and then these blocks are taken as pattern words. 
 
One can take a pattern word of any length depending upon the prior 
knowledge of assignable character for a fixed group of bits. For a binary 
pattern word of length ‘b’, we have possibility of 2b different words. If we 
do a certain computation on given message, for each of these 2b possible 
words, then we will have 2b computed quantities. These 2b quantities or 
measures together will constitute a 2b-dimensional feature vector. So, by 
varying pattern word length ‘b’, we will get feature vectors of different 
dimensions from a particular message. For example, for b=5 and b=7, 32-
dimensional and 128-dimensional feature vector will be obtained 
respectively. In each case, we get different feature space with different 
components and different dimensions. Following this method, we can 
have different representations of a particular raw pattern. 
 
In a message Ml

k, number of total occurrences of pattern words,‘t’ is given 
by 
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In the subsequent sub-sections, we present further, the two different types 
of computations done to compute the feature vectors. In these subsections, 
we refer 'ith pattern word’ for binary equivalent of decimal number 'i', 
where 0 ≤ i ≤ 2b –1. For example, if b = 5 then dimension of the vector = 
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25 =32 and the indices of the vector will vary from 0 to 31. It can be better 
understood with the help of table given below. 
  
    Binary Word               Equivalent Decimal           Feature component 
 

00000    0    F[0] 
00001     1    F[1] 
    |      |       | 
00111     7    F[7] 
01000    8    F[8] 
    |     |       | 
11111    31    F[31] 
 

3.1.1 Percentage Frequency Vector (PFV): 
 
First, we compute the frequency vector F. The ith component of the vector 
F, 'fi' is the frequency of ith pattern word in a particular message, where 0 ≤ 
i ≤ 2b -1. So, ith component of the percentage frequency vector P, 'pi' is the 
percentage of the ith component of the frequency vector F. Each 
component  'pi' where 0 ≤ i ≤ 2b –1, can be computed as  
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3.1.2 Average Distance Vector (ADV): 
 
In any message, any pattern word can occur more than once. Based on 
these different occurrences of the same pattern word and distances 
between them, we compute average distance vector. Each occurrence in 
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the message is marked by the first bit of a pattern word. Let Pi,j be the 
position of the first bit of ith pattern word, in jth occurrence in the message 
then the ith component of the average distance vector a is defined as  
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As defined above, fi  is the number  of times the ith pattern word  occur in 
the message sequence, where 0 ≤ i ≤ 2b -1.  
 
Now, from each given message bit-stream for a fixed pattern word length, 
four types of feature vectors can be generated with the help of (4) and (5) 
depending upon different choices, as shown below.  

 
One Message (or raw pattern) 

 
 
Pattern word length:     ‘b’ bits        
       

 
Reading ways:   Overlapping             Non-overlapping 

         
 
 
Vectors:            PFV.               ADV    PFV     ADV  
 
 
In further discussion, we will use the following notations described in 
table 3 to refer the four possible cases. The notations have been taken as 
first letter of each words near the arrow in small letters. 
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Notation Pattern Word 
Length: b= 5 or7  

Way of 
Reading 

Type of Vector 

bop ‘b’ bits overlapping percentage frequency 

boa ,, ,, Average distance 
bnp ,, non-

overlapping 
percentage frequency 

bna ,, ,, Average distance 
Table 3 

4.   Algorithm: 
 
Suppose there are m classes w1, w2, ---, wm and N is the total number of 
raw patterns taken from each class. Thus, in total we have mN patterns. 
Let we denote the number of patterns to be taken for learning from each 
class by L. The remaining (N-L) patterns will be used for testing. Let we 
present all the patterns in ‘r’ different representations taking different 
combinations of choices i.e. varying the pattern word length, way of 
reading and type of vector. The dimension of each pattern in any 
representation will depend upon the pattern word length chosen for that 
representation. Let we denote the dimension in the pth representation by np, 
where p  = 1, 2, ---, r. 
 
Step 1: Make a set of raw patterns (or message bit streams), keeping the 

patterns of all classes together. From this set, further compute ‘r’ 
sets by converting these patterns into vectors in ‘r’ different 
representations. 

 
Step 2: Select one of the classification technique such as minimum 

distance classifier, Bayes classifier or perceptron algorithm etc. as 
discussed in Tou and Gonzalez ([14]:1974), Bow ([15]:1984), 
Kant and Sharma ([16]:2000) etc. 

 
Step 3: Pass each representation of patterns to the classifier one by one 

i.e. for p = 1, 2, ---, r, apply classification algorithm to pth 
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representation which is a set containing np-dimensional vectors. 
Store class allotted to each pattern in each representation.  

 
Step 4: Set j = 1.  
 
Step 5:For jth pattern, initialize count [ i ] = 0, where i = 1,2,---, m. 
 
Step 6: Set p = 1. 
 
Step 7: If jth pattern in pth representation goes to class wk, increment the 

count [ k ] by 1. 
 
Step 8: Repeat Step 7 for p = 2, ---, r. 
 
Step 9: Finally, assign jth pattern to class wk if 
 

  { }]i[countmax]k[count
m

1i=
=  

  
            If there are more than one class such that the quantity count [k] of 

these classes are equal to the maximum value computed in the 
equation, then there arise uncertainty about the final class-
membership of the pattern under consideration. In that case, the 
pattern is kept into the category of rejection. 

 
Step 10: Repeat Step 5 to Step 9 for j = 2, ---, mN. 
 
5. Experimentation and Results: 
 
As discussed earlier, we have experimented with the problem of 
identification among the encrypted bit streams of scenes, speech and the 
text respectively. To deal with this three-class problem, we have first 
computed different suitable representations from these bit streams. Each 
representation is a set of vectors computed from the bit streams. Various 
techniques have been applied to classify the patterns for each 
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representation. Here, we are showing the classification results by two 
classifiers namely, maximum likelihood classifier and minimum distance 
classifier for each individual representation of patterns. And finally we 
have shown the results obtained by proposed fusion approach.  

.  
Maximum likelihood classifier: In the Tables 5.1(a) to 5.1(d), we have 
shown the percentage self-classification given by the maximum likelihood 
classifier for the four different representations of the same set of patterns. 
Notation used for each representation can be understood with the help of 
table 3. We have taken 150 patterns for learning of the classifier from each 
of the class. Table 5.2 shows the results obtained by fusion of 
classification results in individual representations. In Table 5.2, we have 
included the percentage of patterns, which cannot be allocated to any class 
due to uncertainty in deciding the final class membership.  
 
 

Representation: ‘5na’ % Classification 
Encrypted Scene Encrypted Speech Encrypted Text 

Encrypted Scene 82.67 10 7.33 
Encrypted Speech 8 84.67 7.33 

Encrypted Text 8.67 13.33 78 
Table 5.1(a) 

 
Representation: ‘5oa’ % Classification 

Encrypted Scene Encrypted Speech Encrypted Text 
Encrypted Scene 82.67 9.33 10 

Encrypted Speech 16.67 80 3.33 
Encrypted Text 13.33 8.67 78 

Table 5.1(b) 
 
Representation: ‘7na’ % Classification 

Encrypted Scene Encrypted Speech Encrypted Text 
Encrypted Scene 98 0 2 

Encrypted Speech 1 97 2 
Encrypted Text 0.67 0 99.33 

Table 5.1(c) 
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Representation: ‘7oa’ % Classification 
Encrypted Scene Encrypted Speech Encrypted Text 

Encrypted Scene 97.33 1.33 1.33 
Encrypted Speech 1 97 2 

Encrypted Text 0 4.67 95.33 
Table 5.1(d) 

 
Proposed Approach % Classification 

Encrypted 
Scene 

Encrypted 
Speech 

Encrypted 
Text 

Rejecte
d 

Encrypted Scene 96 0 0 4 
Encrypted 

Speech 
0 98.67 0 1.33 

Encrypted Text 0 0 96 4 
Table 5.2 

 
In Tables 5.1(a) to 5.1(d), we observe some wrong classifications i.e. the 
percentage of patterns, which are misclassified to other classes to whom 
they do not belong actually. But in Table 5.2, we can see that there are no 
wrong classifications among classes, though we have some rejections 
here. This means that misclassification occurred in case of individual 
representations is somewhat corrected by our approach of fusion. And the 
patterns, which cannot be still correctly classified due to lack of 
consensus, are shifted to rejection category. Knowing that a 
misclassification is costly than a rejection, we found our classification 
approach to be advantageous. 
 
This phenomenon is illustrated in the Graph(1) displayed next. In the 
graph, three series are plotted to show the percentage of number of 
misclassified patterns in each of the three classes. In each series, the 
classification results obtained in individual representations and by 
proposed fusion approach are compared. It is clear from the graph that 
using the proposed approach of fusion, we get a decrease to zero in 
percentage of misclassification in each of the class. 
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Minimum Distance Classifier: The percentage self-classification for 
different representation of patterns with minimum distance classifier has 
been summarized in Table 5.3(a) to 5.3(f). After fusing the classification 
results in these six representations, we get improved results as shown in 
Table 5.4. Here also, we observe that by using fusion there is a great 
decrement in number of misclassified patterns, in each of the class. The 
patterns, which cannot be allocated to any class due to a tie of votes, are 
kept in rejection category 
 
 

Representation: ‘5oa’ % Classification 
Encrypted Scene Encrypted Speech Encrypted Text 

Encrypted Scene 34 31.33 34.67 
Encrypted Speech 27.33 48 24.67 

Encrypted Text 25.33 30.67 44 
Table 5.3(a) 
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Representation: ‘5na’ % Classification 
Encrypted Scene Encrypted Speech Encrypted Text 

Encrypted Scene 55.33 18 26.67 
Encrypted Speech 28.67 50 21.33 

Encrypted Text 28.66 22 49.33 
Table 5.3(b) 

 
 
Representation: ‘7na’ % Classification 

Encrypted Scene Encrypted Speech Encrypted Text 
Encrypted Scene 52.67 24 23.33 

Encrypted Speech 20 60 20 
Encrypted Text 26 22 52 

Table 5.3(c) 
 
 
Representation: ‘7na’ % Classification 

Encrypted Scene Encrypted Speech Encrypted Text 
Encrypted Scene 66.67 20.67 12.67 

Encrypted Speech 21.33 55.33 23.33 
Encrypted Text 20.67 20 59.33 

Table 5.3(d) 
 
 
Representation: ‘5np’ % Classification 

Encrypted Scene Encrypted Speech Encrypted Text 
Encrypted Scene 51.33 25.33 23.33 

Encrypted Speech 24.67 47.33 28 
Encrypted Text 28 26.67 45.33 

Table 5.3(e) 
 
 
Representation: ‘7np’ % Classification 

Encrypted Scene Encrypted Speech Encrypted Text 
Encrypted Scene 66.67 16.67 16.67 

Encrypted Speech 16.67 64.67 18.67 
Encrypted Text 20 16 64 

Table 5.3(f) 
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Proposed Approach % Classification 

Encrypted 
Scene 

Encrypted 
Speech 

Encrypted 
Text 

Rejected 

Encrypted 
Scene 

62.67 12.67 12 12.67 

Encrypted 
Speech 

8 60 11.33 20.67 

Encrypted Text 14.67 10.67 59.33 15.33 
Table 5.4 

 
With minimum distance classifier, we are able to get more than 55% 
classification consistently for each class. These results of classification 
may not be very high for the practical application, but this consistency is 
extremely useful from a cryptanalysis point of view.  
 
The Graph(2) plotted to compare the results by minimum distance 
classifier, in different representations and those obtained by fusion, 
presents a similar trend as shown by maximum likelihood classifier. As 
compared to individual representations, the proposed fusion approach 
gives the least number of wrongly classified 
patterns.
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Graaph(2): Comparison of % Misclassification by Minimum Distance Classifier
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Using both the classifiers, we have tested several sets of patterns from 
each class, and the test-classification is also found to be quite 
encouraging.  
 
6.   Observations and Conclusion:  
 
The experimentation done for the present work has given us enough idea 
about handling the problem of discrimination among various random 
sources. The proposed idea is quite general in nature and can be applied to 
other kind of classification problem as well, if it is possible to compute 
different measurements for the same set of patterns. Also, experimentation 
can be done for any number of classes as described in Algorithm, instead 
of restricting to a three class problem. According to the nature of 
underlying problem and knowledge of significant features, different 
measurements may be computed to get different representations of 
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patterns. For our problem, we adhered to the most suitable representations 
of patterns where the classification is more transparent.  Dealing with the 
said problem, the following observations and constraints are found to be 
important: 
 

1. While assigning class membership to a pattern in each of the 
representation space, the classifier has three possibilities. Either 
the pattern will be correctly classified, wrongly classified or the 
classifier will remain uncertain about the class membership of the 
pattern. The third possibility of uncertainty of decision arises due 
to tie between values of discriminating function for the possible 
classes. This situation of neutral position of the classifier leads to 
no decision or rejection, i.e. classification is neither correct, nor 
wrong. Here, for convenience, we have considered only those 
representation spaces in which classifier had only two alternatives, 
of being correct or wrong and no rejections. Again, while taking 
the final decision by fusion as proposed, there may be cases of no 
consensus. This situation of uncertainty in deciding final class 
membership of a pattern leads to a rejection. We have kept these 
patterns in a separate category. 

 
2. After applying proposed fusion, it has been observed that there are 

no wrong classifications with maximum likelihood classifier, 
though there are few patterns, which cannot be allocated to any 
class and have been kept in no decision category. Minimum 
distance classifier shows the similar trend with less wrong 
classifications by fusion as compared to those obtained in 
individual representations. Here also, the patterns about which the 
classifier is not certain are kept in rejected category. For both the 
classifiers, graphs have also been plotted to compare the 
percentage misclassification of patterns, in individual 
representations and after fusion by proposed approach. It is clear 
from the graphs by using the proposed fusion approach that we are 
getting reduced percentage of misclassification, which is the merit 
of our approach. 
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3. Final results, obtained by fusion by proposed approach, are better 
than the results obtained by using single representation spaces. 

 
4. As we have discussed earlier, each of the representation space has 

dimension as np, p = 1, 2, ---, r. The general observation is that we 
obtain consistently better performance when the size of learning 
set is more than 5x np. 
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