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Abstract

In this note we present a method to construction new k-hyperideals from

given k-ideals of a semiring R by using of the P -hyperoperations. Then we

investigate the relationship between them. In particular, we describe all k-

hyperideals of the semihyperring of the nonnegative integers.
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1 Introduction

Hyperstructures theory was born in 1934 when Marty [12] defined hypergroups

as a generalization of groups. Also Wall in 1937 defined the notion of cyclic hyper-

group. This theory has been studied in the following decades and nowadays by many

mathematicians. A short review of the theory of hypergroups appears in [2]. A re-

cent books [2], [3] and [15] contain a wealth of applications. There are applications
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to the following subjects: geometry, hypergraphs, binary relations, combinatorics,

codes, cryptography, probability, groups, rational algebraic functions and etc. One

of the several contexts which they arise is hyperring. First M. Krasner studied hy-

perrings, which is a triple (R, +, .), where (R, +) is a canonical hypergroup and (R, .)

is a semigroup, such that for all a, b, c ∈ R, a(b + c) = ab + ac, (b + c)a = ba + ca

([10]).

The notion of k-ideals in ordinary semirings was introduced by D. R. Latore in

1965 ([11]). Also M. K. Sen and others worked on one-sided k-ideals and maximal

k-ideals of semirings ([14], [16]).

The authors in [6] introduced the notion of k-hyperideals in the sense of Krasner

and obtained some related results about this notion. We now follow [6] to introduce

a method to construct new k-hyperideals from given k-ideals.

In section 2 of this paper, we gather all the preliminaries of (semi)hyperrings and

k-(hyper)ideals which will be used in the next sections. In section 3, we represent

some methods for construction semihyperrings from semirings by P -hyperoperations

and then we investigate the relationship between their k-hyperideals and k-ideals.

As an important result of this section, all k-hyperideals of the nonnegative integers

N∗ as a semihyperring, constructed by P -hyperoperations, are described. In section

4, we characterize the k-hyperideals of product of semihyperrings which are made

by P -hyperoperations and a family of semirings.

2 Preliminaries

A map ◦ : H × H −→ P∗(H) is called hyperoperation or join operation. A

hypergroupoid is a set H with together a (binary) hyperoperation ◦. A hypergroupoid

(H, ◦), which is associative, that is x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, y, z ∈ H is called a

semihypergroup .

A hypergroup is a semihypergroup such that ∀x ∈ H we have x◦H = H = H ◦x,

which is called reproduction axiom (see [2]).

Let H be a hypergroup and K be a nonempty subset of H. Then K is said to be
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a subhypergroup of H if itself is a hypergroup under hyperoperation ”◦” restricted

to K. Hence it is clear that a subset K of H is a subhypergroup if and only if

aK = Ka = K, under the hyperoperation on H.

Definition 2.1. A hyperalgebra (R, +, .) is called a semihyperring if and only if

(i) (R, +) is a semihypergroup;

(ii) (R, .) is a semigroup;

(iii) ∀a, b, c ∈ R, a.(a + b) = a.b + a.c and (b + c).a = b.a + c.a.

Remark. In Definition 2.1, if we replace (iii) by

∀a, b, c ∈ R, a.(a + b) ⊆ a.b + a.c and (b + c).a ⊆ b.c + c.a,

we say that R is a weak distributive semihyperring.

A semihyperring R is called with zero element, if there exists an unique element

0 ∈ R such that 0 + x = x = x + 0 and 0x = 0 = x0 for all x ∈ R.

A semihyperring R is called additive commutative, if x + y = y + x, ∀x, y ∈ R.

A semihyperring (R, +, .) is called a hyperring provided (R, +) is a canonical

hypergroup.

Definition 2.2. A hyperring (R, +, .) is called

(i)commutative if a.b = b.a for all a, b ∈ R;

(ii)with identity, if there exists an element, say 1 ∈ R, such that 1.x = x.1 = x

for all x ∈ R.

Let (R, +, .) be a hyperring, a nonempty subset S of R is called a subhyperring

of R if (S, +, .) is itself a hyperring.

Definition 2.3. A subhyperring I of a hyperring R is said to be a (resp. right) left

hyperideal of R provided that ( resp. x.r ∈ I ) r.x ∈ I for all r ∈ R and for all

x ∈ I. We say that I is a hyperideal if I is both a left and right hyperideal.

Definition 2.4.[11] Let (R, +, .) be a semiring. A nonempty subset I of R is called

a left k-ideal of R, if I is a left ideal of R and for a ∈ I and x ∈ R we have

a + x ∈ I or x + a ∈ I =⇒ x ∈ I.
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Similarly a right k-ideal is defined. A two sided k-ideal or simply a k-ideal is both

a left and right k-ideal. We denote I as k-ideal (resp. ideal) of R by I Ck R (resp.

I C R).

In the sequel, by R we mean a semihyperring, unless otherwise specified.

Definition 2.5.[6] Let (R, +, .) be a ( weak distributive ) semihyperring. A nonempty

subset I of R is called

(i) a left ( resp. right) hyperideal of R if and only if

(a) (I, +) is a semihypergroup of (R, +); and

(b) rx ∈ I (resp. xr ∈ I), for all r ∈ R and for all x ∈ I.

(ii) a hyperideal of R if it is both left and right hyperideal of R. The hyperideal I

of R is denoted by I Ch R.

(iii) a left k-hyperideal of R, if I is a left hyperideal of R and for a ∈ I and x ∈ R

we have

a + x ≈ I or x + a ≈ I =⇒ x ∈ I,

where by A ≈ B we mean A ∩B 6= ∅.

(iv) Similarly a right k-hyperideal is defined. A two sided k-hyperideal or simply a

k-hyperideal is both a left and right k-hyperideal. We denote I as k-hyperideal of

R by I Ck.h R.

3 Construction of k-hyperideals by P -hyperoperations

In this section we apply three kinds of P -hyperoperations (which were introduced

for Hv-structures in [15]) to construct semihyperrings from semirings. Then we

investigate the relationship between their k-hyperideals and k-ideals .

Definition 3.1. Let (R, +, .) be semiring and ∅ 6= P ⊆ R. We define two hyperop-

erations as follows

x⊕c y = {x + t + y | t ∈ P},
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x� y = x.y = xy,

which ⊕c is called centre P -hyperoperation.

Proposition 3.2. Let (R, +, .) be semiring and P ⊆ R be a nonempty such that

PR ⊆ P and RP ⊆ P , then (R,⊕c,�) is a weak distributive semihyperring.

Proof . First, we show (R,⊕c) is a semihypergroup. For this we prove that

(x⊕c y)⊕c z = x⊕c (y ⊕c z).

For x, y, z ∈ R we have

a ∈ (x⊕c y)⊕c z =⇒ ∃a1 ∈ x⊕c y, a ∈ a1 ⊕c z

=⇒ ∃t1, t2 ∈ P, a = a1 + t1 + z, a1 = x + t2 + y

=⇒ a = x + t2 + y + t1 + z

=⇒ a = x + t2 + b, b = y + t1 + z ∈ y ⊕c z

=⇒ a ∈ x⊕c b, b ∈ y ⊕c z

=⇒ a ∈ x⊕c (y ⊕c z)

=⇒ (x⊕c y)⊕c z ⊆ x⊕c (y ⊕c z).

Similarly, we obtain that

(x⊕c y)⊕c z ⊇ x⊕c (y ⊕c z).

Clearly (R,�) is a semigroup, since (R, .) is a semigroup and x� y = xy.

We now prove weak distributivity, that is

x� (y ⊕c z) ⊆ (x� y)⊕c (x� z)

= xy ⊕c xz.

For this we have

a ∈ x� (y ⊕c z) =⇒ ∃a1 ∈ y ⊕c z, a = x� a1 = xa1

=⇒ ∃t ∈ P, a = xa1, a1 = y + t + z

=⇒ a = x(y + t + z)

= xy + xt + xz ∈ xy ⊕c xz ( RP ⊆ P )

=⇒ x� (y ⊕c z) ⊆ xy ⊕c xz.
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Similarly we conclude that (y ⊕c z)� x ⊆ yx⊕c zx.�

Definition 3.3. Let (R, +, .) be a semiring and ∅ 6= P ⊆ R. We define the following

hyperoperations

x⊕r y = {x + y + t | t ∈ P}, x⊕l y = {t + x + y | t ∈ P},

x� y = xy,

which ⊕r and ⊕l are called right P -hyperoperation and left P -hyperoperation respec-

tively.

Proposition 3.4. Let (R, +, .) be a semiring and P ⊆ R be a nonempty such that

PR ⊆ P and RP ⊆ P and x + P = P + x, for all x ∈ R. Then (R,⊕r,�) and

(R,⊕l,�) are weak distributive semihyperrings.

Proof. First, we prove that

(x⊕r y)⊕r z = x⊕r (y ⊕r z).

For this we have

a ∈ (x⊕r y)⊕r z =⇒ ∃a1 ∈ x⊕r y, a ∈ a1 ⊕r z

=⇒ ∃t1, t2 ∈ P, a1 = x + y + t1, a = a1 + z + t2

=⇒ ∃t1, t2 ∈ P, a = x + y + t1 + z + t2 (1)

also we have

b ∈ x⊕r (y ⊕r z) =⇒ ∃b1 ∈ y ⊕r z, b ∈ x⊕r b1

=⇒ ∃w1, w2 ∈ P, b1 = y + z + w1, b = x + b1 + w2

=⇒ ∃w1, w2 ∈ P, b = x + y + z + w1 + w2 (2)

From (1) we have

a = x + y + t1 + z + t2 = x + y + z + w1 + t2, ∃w1 ∈ P (z + P = P + z)

=⇒ a ∈ x⊕r (y ⊕r z) (by (2))

=⇒ (x⊕r y)⊕r z ⊆ x⊕r (y ⊕r z).
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Similarly we can prove that

(x⊕r y)⊕r z ⊇ x⊕r (y ⊕r z).

Clearly (R,�) is semigroup, since (R, .) is a semigroup. In a similar way to the

Proposition 3.2 we can prove weak distributivity. Therefore (R,⊕r,�) is a weak

distributive semihyperring. Analogously we can prove that (R,⊕l,�) is a weak

distributive semihyperring. �

Remark. In Propositions 3.2 and 3.4, if we replace the conditions RP ⊆ P and

PR ⊆ P by rP = P = Pr for all r ∈ R, then (R,⊕c,�) and (R,⊕r,�) and

(R,⊕l,�) become semihyperring.

Theorem 3.5. Let (R, +, .) be a semiring with zero and P be the same as Propo-

sition 3.2 such that 0 ∈ P . Then there is a one-to-one correspondence between the

k-ideals of (R, +, .) containing P and k-hyperideals of (R,⊕c,�).

Proof. Let I be a k-ideal of (R, +, .) containing P . First we prove that I /h

(R,⊕c,�). Suppose that x, y ∈ I, we prove x⊕c y ⊆ I. For this we have

z ∈ x⊕c y =⇒ ∃t ∈ P ⊆ I, z = x + t + y

=⇒ z = x + t + y ∈ I ( since x, t, y ∈ I )

=⇒ x⊕c y ⊆ I.

Also if r ∈ R and x ∈ I, then r � x = rx ∈ I, since I / (R, +, .). Thus I is a

hyperideal of (R,⊕c,�). We now prove that I /k.h (R,⊕c,�). For r ∈ R and x ∈ I

we have

r ⊕c x ≈ I =⇒ ∃z ∈ r ⊕c x ≈ I

=⇒ ∃t ∈ P, z = r + t + x, z ∈ I

=⇒ r + t + x ∈ I, t + x ∈ I

=⇒ r ∈ I ( since I Ck (R, +, .) )

=⇒ I /k.h (R,⊕c,�).
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Conversely, suppose that I /k.h (R,⊕c,�). We prove that I is a k-ideal of (R, +, .)

containing P . For this we have

x, y ∈ I =⇒ x⊕c y ⊆ I ( I Ch (R,⊕c,�) )

=⇒ ∀t ∈ P, x + t + y ∈ I

=⇒ x + y ∈ I ( 0 ∈ P ) .

On the other hand

r ∈ R, x ∈ I =⇒ r � x ∈ I ( I Ch (R,⊕c,�) )

=⇒ rx ∈ I.

Also we have

r + x ∈ I, x ∈ I =⇒ r + 0 + x ∈ I, x ∈ I (0 ∈ P )

=⇒ r ⊕c x ≈ I, x ∈ I

=⇒ r ∈ I ( I Ck.h (R,⊕c,�)

=⇒ I Ck (R, +, .).

We have 0⊕c 0 ⊆ I, then {0 + t + 0 | t ∈ P} ⊆ I, therefore P ⊆ I. �

Theorem 3.6. Let (R, +, .) be a semiring with zero and P be the same as Propo-

sition 3.4 such that 0 ∈ P . Then there is a one-to-one correspondence between

k-ideals of (R, +, .) containing P and k-hyperideals of ( (R,⊕l,�) ) (R,⊕r,�).

Proof. The proof is similar to the proof of Theorem 3.5 by some manipulation. �

Examples. (i) Let N be the set of natural numbers and 2N = {2, 4, 6, 8, ...}. Clearly

(N, +, .) is a semiring and 2N is a k-ideal of (N, +, .). Now if P = {4, 8, 12, 16, ...} ⊆

2N, then it is easy to verify that (N,⊕c,�) is a weak distributive semihyperring,

where for all m, n ∈ N we have

m⊕c n = {m + k + n | k ∈ P} and m� n = mn.

Thus 2N is a k-hyperideal of (N,⊕c,�).
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(ii) Let N∗ = N ∪ {0} and N∗[x] = {f(x) =
n∑

i=1

aix
i | ai ∈ N∗}. Clearly

(N∗[x], +, .) is a semiring and < x >= {f(x) ∈ N∗[x] | a0 = 0} is a k-ideal of

(N∗[x], +, .) generated by x. Set P =< xm > for m ∈ N. Obviously, 0 ∈ P ⊆< x >.

Then by Propositions 3.2 and 3.5, (N∗[x],⊕c,�) is a weak distributive semihyperring

and < x > is a k-hyperideal of (N∗[x],⊕c,�).

In the next theorem we describe all k-hyperideals of semihyperring of the nat-

ural numbers constructed by P -hyperoperation. For this we consider the semiring

(N, +, .) of natural numbers by usual ordinary operations.

Theorem 3.7. Let 0 ∈ P ⊆ N∗ and PN∗ ⊆ P and N∗P ⊆ P and P ⊆ I.

Then I is a k-hyperideal of (N∗,⊕c,�) if and only if there exists a ∈ N∗ such that

I = {na | n ∈ N∗}.

Proof. By Theorem 3.5, I Ck.h (N∗,⊕c,�) if and only if I Ck (N∗, +, .). Also by

Proposition 4.1 [14], I Ck (N∗, +, .) if and only if there exists a ∈ N∗ such that

I = {na | n ∈ N∗}. �

4 Product of k-hyperideals

In the sequel by
∏
i∈I

Ri, we mean the cartesian product of the family {Ri}i∈I . It

means ∏
i∈I

Ri = {(xi)i∈I | xi ∈ Ri}.

Proposition 4.1. Let {Ri}i∈I be a family of semirings and Pi ⊆ Ri be nonempty

such that RiPi ⊆ Pi and PiRi ⊆ Pi, for all i ∈ I. For (xi)i∈I , (yi)i∈I ∈
∏
i∈I

Ri. Define

(xi)i∈I ⊕c (yi)i∈I = {(xi + ti + yi)i∈I | ti ∈ Pi},

(xi)i∈I � (yi)i∈I = (xiyi)i∈I .

Then (
∏
i∈I

Ri,⊕c,�) is a weak distributive semihyperring .
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Proof. First we show that (
∏
i∈I

Ri,⊕c) is a semihypergroup. For this we prove that

(xi)i∈I ⊕c [(yi)i∈I ⊕c (zi)i∈I ] = [(xi)i∈I ⊕c (yi)i∈I ]⊕c (zi)i∈I .

We have A ∈ (xi)i∈I ⊕c [(yi)i∈I ⊕c (zi)i∈I ]

=⇒ ∃ti ∈ Pi, A ∈ (xi)i∈I ⊕c (yi + ti + zi)i∈I

=⇒ ∃t′i ∈ Pi, A = (xi + t′i + yi + ti + zi)i∈I

=⇒ A ∈ (xi + t′i + yi)i∈I ⊕c (zi)i∈I

=⇒ A ∈ [(xi)i∈I ⊕c (yi)i∈I ]⊕c (zi)i∈I

=⇒ (xi)i∈I ⊕c [(yi)i∈I ⊕c (zi)i∈I ] ⊆ [(xi)i∈I ⊕c (yi)i∈I ]⊕c (zi)i∈I .

In a similar way, we can prove the reverse inclusion. Therefore, (
∏
i∈I

Ri,⊕c) is

a semihypergroup. Clearly (
∏
i∈I

Ri,�) is a semigroup. It is enough we prove weak

distributivity. For this we should prove that

(xi)i∈I � [(yi)i∈I ⊕c (zi)i∈I ] ⊆ (xiyi)i∈I ⊕c (xizi)i∈I .

We have A ∈ (xi)i∈I � [(yi)i∈I ⊕c (zi)i∈I ]

=⇒ ∃ti ∈ Pi, A ∈ (xi)i∈I � (yi + ti + zi)i∈I

=⇒ A = (xi(yi + ti + zi))i∈I

= (xiyi + xiti + xizi)i∈I

∈ (xiyi)i∈I ⊕c (xizi)i∈I ( RiPi ⊆ Pi ).

This completes the proof. �

Proposition 4.2. If {Ri}i∈I is a family of semirings and for all i ∈ I, Pi ⊆ Ri is

nonempty such that RiPi ⊆ Pi and PiRi ⊆ Pi and xi + Pi = Pi + xi, for all xi ∈ Ri,

then (
∏
i∈I

Ri,⊕r,�) and (
∏
i∈I

Ri,⊕l,�) are weak distributive semihyperring where

(xi)i∈I ⊕r (yi)i∈I = {(xi + yi + ti)i∈I | ti ∈ Pi},

(xi)i∈I ⊕l (yi)i∈I = {(ti + xi + yi)i∈I | ti ∈ Pi},
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(xi)i∈I � (yi)i∈I = (xiyi)i∈I .

Proof. First we prove that (
∏
i∈I

Ri,⊕r) is a semihypergroup. For this we prove that

(xi)i∈I ⊕r [(yi)i∈I ⊕r (zi)i∈I ] = [(xi)i∈I ⊕r (yi)i∈I ]⊕r (zi)i∈I .

We have A ∈ (xi)i∈I ⊕r [(yi)i∈I ⊕r (zi)i∈I ]

=⇒ ∃ti ∈ Pi, A ∈ (xi)i∈I ⊕r (yi + zi + ti)i∈I

=⇒ ∃t′i ∈ Pi, A = (xi + yi + zi + ti + t′i)i∈I

=⇒ ∃wi ∈ Pi, A

= (xi + yi + wi + zi + t′i)i∈I ( since zi + Pi = Pi + zi )

∈ (xi + yi + wi)i∈I ⊕r (zi)i∈I

⊆ [(xi)i∈I ⊕r (yi)i∈I ]⊕r (zi)i∈I

=⇒ (xi)i∈I ⊕r [(yi)i∈I ⊕r (zi)i∈I ] ⊆ [(xi)i∈I ⊕r (yi)i∈I ]⊕r (zi)i∈I .

Similarly, we can prove that the reverse inclusion.

Clearly (
∏
i∈I

Ri,�) is a semigroup. Also the weak distributivity is obtained sim-

ilar to the proof of Proposition 4.1. Therefore (
∏
i∈I

Ri,⊕r,�) is a semihyperring.

Analogously we can prove that (
∏
i∈I

Ri,⊕l,�) is a weak distributive semihyperring.

This completes the proof. �

Remark. In Propositions 4.1 and 4.2, if we replace the conditions RiPi ⊆ Pi and

PiRi ⊆ Pi by the condition riPi = Pi = Piri, for all ri ∈ Ri and for all i ∈ I, then

(
∏
i∈I

Ri,⊕c,�), (
∏
i∈I

Ri,⊕r,�) and (
∏
i∈I

Ri,⊕l,�) will be semihyperrings.

Proposition 4.3. If {Rj}j∈J is a family of semirings and for all j ∈ J , Pj ⊆ Rj

is nonempty such that RjPj ⊆ Pj and PjRj ⊆ Pj. Then I is a k-hyperideal of

(
∏
j∈J

Rj,⊕c,�) if and only if I =
∏
j∈J

Ij such that Ij /k.h (Rj,⊕cj
,�j), where

xj ⊕cj
yj = {xj + tj + yj | tj ∈ Pj},

xj �j yj = xjyj.
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Proof. (=⇒) For all j ∈ J define

Ij = {x ∈ Rj | (xi)i∈J ∈ I, ∃xi ∈ Ri, x = xj}.

We have

x, y ∈ I =⇒ ∃xi, yi ∈ Ri, (xi)i∈J , (yi)i∈J ∈ I, x = xj, y = yj

=⇒ (xi)i∈J ⊕c (yi)i∈J ⊆ I (I Ch (
∏
j∈J

Rj,⊕c,�))

=⇒ ∀ti ∈ Pi, (xi + ti + yi)i∈J ∈ I (∀i ∈ J)

=⇒ ∀tj ∈ Pj, x + tj + y ∈ Ij

=⇒ x⊕cj
y ⊆ Ij.

Now suppose that

rj ∈ Rj, x ∈ Ij =⇒ ∃ri ∈ Ri, (ri)i∈J ∈
∏
i∈J

Ri and ∃xi ∈ Ri, (xi)i∈J ∈ I, x = xj

=⇒ (ri)i∈J � (xi)i∈J ∈ I ( I Ch (
∏
i∈J

Ri,⊕c,�) )

=⇒ (rixi)i∈J ∈ I

=⇒ rjxj ∈ Ij ( by definition of Ij ) .

Therefore Ij Ch Rj.

We now show that Ij /k.h Rj for all j ∈ J . We have

rj ∈ Rj, xj ∈ Ij, rj ⊕cj
xj ≈ Ij =⇒ ∃tj ∈ Pj, rj + tj + xj ∈ Ij

=⇒ (rj)j∈J ⊕c (xj)j∈J ≈ I,

where (rj)j∈J ∈
∏
j∈J

Rj, (xj)j∈J ∈
∏
j∈J

Ij. Then since I Ck.h (
∏
j∈J

Rj,⊕c,�) we have

(rj)j∈J ∈ I =⇒ rj ∈ Ij, ∀j ∈ J

=⇒ Ij /k.h Rj.

(⇐=) Suppose that I =
∏
j∈J

Ij such that Ij /k.h (Rj,⊕cj
,�j). First we prove I /h

(
∏
j∈J

Rj,⊕c,�). Let (xj)j∈J , (yj)j∈J ∈ I, then

(xj)j∈J ⊕c (yj)j∈J = {(xj + tj + yj)j∈J | tj ∈ Pj} ⊆
∏
j∈J

Ij;
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also we have

Ij /h (Rj,⊕cj
,�j) =⇒ ∀tj ∈ Pj, xj + tj + yj ∈ Ij

=⇒ (xj)j∈J ⊕c (yj)j∈J ⊆ I.

Now if (rj)j∈J ∈
∏
j∈J

Rj and (xj)j∈J ∈ I, then (rj)j∈J � (xj)j∈J = (rjxj)j∈J ∈
∏
j∈J

Ij,

since rjxj ∈ Ij by hypothesis. We now prove that I /k.h (
∏
j∈J

Rj,⊕c,�). For this we

have

(rj)j∈J ∈
∏
j∈J

Rj, (xj)j∈J ∈ I, (rj)j∈J ⊕c (x1, x2) ≈ I

=⇒ ∃tj ∈ Pj, (rj + tj + xj)j∈J ∈ I =
∏
j∈J

Ij

=⇒ ∃tj ∈ Pj, rj + tj + xj ∈ Ij, ∀j ∈ J

=⇒ rj ⊕cj
xj ≈ Ij, rj ∈ Rj, xj ∈ Ij

=⇒ rj ∈ Ij ( Ij Ck.h (Rj,⊕cj
,�j) )

=⇒ (rj)j∈J ∈
∏
j∈J

Ij. �

Proposition 4.4. Let {Rj}j∈J be a family of semirings. Suppose that Pj ⊆ Rj

be nonempty such that RjPj ⊆ Pj and PjRj ⊆ Pj and xj + Pj = Pj + xj, for

all xj ∈ Rj and for all j ∈ J . Then I is a k-hyperideal of (
∏
j∈J

Rj,⊕r,�) ( resp.

(
∏
j∈J

Rj,⊕l,�)) if and only if I =
∏
j∈J

Ij such that for all j ∈ J , Ij /k.h (Rj,⊕rj
,�j),

(resp. Ij /k.h (Rj,⊕lj ,�j)), where

xj ⊕rj
yj = {xj + yj + tj | tj ∈ Pj},

xj ⊕lj yj = {tj + xj + yj | tj ∈ Pj},

xj �j yj = xjyj.

Proof. The proof is similar to the proof of Proposition 4.3. �
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