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ABSTRACT 

 The Hv-structures are hyperstructures where the equality is replaced 
by the non-empty intersection. The fact that this class of the 
hyperstructures is very large, one can use it in order to define several 
objects that they are not possible to be defined in the classical 
hypergroup theory. In the present paper we introduce a kind of 
hyperoperations which are defined on a set equipped with an operation 
or a hyperoperation and a map on itself.  
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1.   Introduction 

The object of this paper is the hyperstructures called Hv-
structures introduced in 1990 [5], which satisfy the weak axioms 
where the non-empty intersection replaces the equality.   

Recall some basic definitions:   

Definitions 1. In a set H equipped with a hyperoperation 
⋅:H×H→P(H), we abbreviate by WASS the weak associativity: 
(xy)z∩x(yz)≠∅, ∀x,y,z∈H and by COW the weak commutativity:  
xy∩yx≠∅, ∀x,y∈H.  The hyperstructure (H,⋅) is called Hv-semigroup 
if it is WASS, is called Hv-group if it is reproductive Hv-semigroup. 
The hyperstructure (R,+,⋅) is called Hv-ring if (+) and (⋅) are WASS, 
the reproduction axiom is valid for (+) and (⋅) is weak distributive 
with respect to (+): x(y+z)∩(xy+xz)≠∅, (x+y)z∩(xz+yz)≠∅, 
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∀x,y,z∈R.  Hv-modulus and Hv-vector spaces are also defined in a 
similar way. 

For more definitions, results and applications on Hv-structures, 
see books [6,2] and on some papers such as [3-11]. A special class [6]:  
An Hv-structure is called very thin iff all its hyperoperations are 
operations except one, which all hyperproducts are singletons except 
only one, which has cardinality more than one.  

The fundamental relations β*, γ* and ε* are defined, in Hv-
groups, Hv-rings and Hv-vector spaces, respectively, as the smallest 
equivalences so that the quotient would be group, ring and vector 
space, respectively (see [1,6]). The way to find the fundamental 
classes is given by analogous theorems to the following [5,6,7]:  

Theorem.  Let (H,⋅) be Hv-group and let us denote by U the set of all 
finite products of elements of H. We define the relation β in H as 
follows:  xβy  iff {x,y}⊂u  where u∈U. Then the fundamental relation 
β* is the transitive closure of  β. 

Proof. The main point is: Take x,y such that {x,y}⊂u∈U and any 
hyperproduct where one of the elements x,y, is used. Then, if this 
element is replaced by the other, the new hyperproduct is inside the 
same fundamental class where the first hyperproduct is. Therefore, if 
the hyperproducts of the above β-classes are products, then, they are 
fundamental classes. Analogous remarks for the relations γ*, in Hv-
rings, and ε*, in Hv-vector spaces, are also applied.  

An element is called single if its fundamental class is 
singleton. 

The fundamental relations are used for general definitions. 
Thus, to define the Hv-field the γ* is used: An Hv-ring (R,+,⋅) is called 
Hv-field if R/γ* is a field [5], and in the sequence the general Hv-
vector space is defined. 

 Let (H,⋅), (H,*) be Hv-semigroups defined on the same set H. 
(⋅) is called smaller than (*), and (*) greater than (⋅), iff there exists an 
automorphism f∈Aut(H,*) such that xy⊂f(x*y), ∀x,y∈H. Then we 
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write ⋅≤* and we say that (H,*) contains (H,⋅). If (H,⋅) is a structure 
then it is called basic structure and (H,*) is called Hb-structure. 

Theorem. Greater hyperoperations of the ones which are WASS or 
COW, are also WASS or COW, respectively. 

Remark 2. The weak axioms lead to a great number of hyper-
operations and these hyperoperations define hyperstructures which 
can be now studied in detail and, in any case, they have a substance; 
hence they can be considered as hyperstructures with interesting 
properties. These are many hyperoperations which, in the past, were 
unlikely to be considered because not even one property was valid in 
them. We can see that the hyperoperations introduced here are 
associative only in very special cases and before 1990 such 
hyperoperations could hardly be considered, even though they 
appeared in the research. Nevertheless, the created theory can now 
give results and discover new properties of the obtained 
hyperstructure. Thus, algebraic domains reveal constructions which 
seem to be chaotic. Even more so, in certain cases, some of these 
hyperstructures contain well known structures or hyperstructures, see 
also [11,12]. 

 This remark follows that constructions and hyper-constructions 
are needed to be enlarged or to become smaller and we can do this: 

Definitions 3. Let (H,⋅) be a hypergroupoid. We say that remove h∈H, 
if we consider the restriction of (⋅) in H-{h}. We say that h∈H absorbs 
h∈H if we replace h by h.  We say that h∈H merges with h∈H, if we 
take as product of any x∈H by h, the union of the results of x with 
both h, h, and consider h and h as one class, with representative h. 

 Most of these constructions are needed in the representation 
theory. Representations of Hv-groups can be considered either by 
generalized permutations or by Hv-matrices [6]. The representation 
problem by Hv-matrices is the following:  

Hv-matrix is a matrix with entries of an Hv-ring. The hyperproduct of 
Hv-matrices A=(aij) and B=(bij), of type m×n and n×r,  respectively, is 
a set of  m×r Hv-matrices:  
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A⋅B   =   (aij)⋅(bij)   =   { C = (cij)  cij ∈ ⊕Σaik⋅bkj  }, 

where ⊕ denotes the n-ary circle hyperoperation on the 
hyperaddition. 

Definition 4. Let (H,⋅) be Hv-group, take a Hv-ring (R,+,⋅) and a set   
MR  ={ (aij)aij∈R },  then any map     

T:H→MR: h→T(h)  with  T(h1h2)∩T(h1)T(h2)≠∅, ∀h1,h2∈H, 

is a Hv-matrix representation. If T(h1h2)⊂T(h1)T(h2), then T is an 
inclusion,  if T(h1h2)=T(h1)T(h2), then T is a good and an induced 
representation for the hypergroup algebra is obtained. 

 In the same attitude recently we defined, using hyperstructure 
theory, hyperoperations on any type of matrices:   

Definition 5 [12]. Let A=(aij)∈Mm×n be matrix and s,t∈N with 1≤s≤m, 
1≤t≤n. Then helix-projection is a map  st:Mm×n→Ms×t:A→Ast=(aij), 
where Ast  has entries 

aij = { ai+κs,j+λt 1≤i≤s, 1≤j≤t  and  κ,λ∈N, i+κs≤m, j+λt≤n } 

Let A=(aij)∈Mm×n, B=(bij)∈Mu×v be matrices, s=min(m,u), t=min(n,v). 
We define a hyper-addition, called helix-addition, as follows 

⊕:Mm×n×Mu×v→P(Ms×t):(A,B)→A⊕B=Ast+Bst=(aij)+(bij)⊂Ms×t 

where  (aij)+(bij)= {(cij)=(aij+bij) aij∈aij  and  bij∈bij)}. 

Let A=(aij)∈Mm×n  and B=(bij)∈Mu×v be matrices and  s=min(n,u). We 
define a hyper-multiplication, called helix-multiplication, as follows 

⊗:Mm×n×Mu×v→P(Mm×v):(A,B)→A⊗B=Ams⋅Bsv=(aij)⋅(bij)⊂Mm×v 

where  (aij)⋅(bij)= {(cij)=(∑aitbtj) aij∈aij  and  bij∈bij)}. 

 The helix-addition is commutative, is WASS, not associative. 
The helix-multiplication is WASS, not associative and it is not 
distributive, not even weak, to the helix-addition. If all used matrices 
are of the same type, then the inclusion distributivity, is valid. 

 From the definition of representations by Hv-matrices, we have 
two difficulties. The first one is to find an appropriate Hv-ring and the 
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second one is to find an appropriate set of Hv-matrices. However, with 
the above hyper-multiplication we can use subsets of matrices of type 
Mm×n with m≠n. Thus, the representation problem is reduced, as in the 
classical theory, in searching appropriate sets from usual matrices. 
This is so, because we have now a hyperalgebra over non-square 
matrices. 

2. New hyperoperations 

 We will define a hyperoperation in a groupoid equipped with a 
map f on it. The map plays crucial role so the hyperoperation is called 
map and it is denoted by ∂f, because the motivation to obtain this is the 
property which the ‘derivative’ has on the product of functions. 
However, since there is no confusion, we will write simply theta ∂. 

Definition 6. Let (G,⋅) be a groupoid (respectively, hypergroupoid) 
and f:G→G be any map. We define a hyperoperation (∂), we call it 
theta-operation, on G as follows 

x∂y = {f(x)⋅y, x⋅f(y) }  (respectively,  x∂y = (f(x)⋅y)∪(x⋅f(y)) 

 If (⋅) is commutative then (∂) is also commutative. If (⋅) is a 
COW hyperoperation, then (∂) is also COW hyperoperation. 

Remark. One can use instead of single valued map f, a multivalued 
map as well. We will not consider this problem here. 

Remark. Motivation for this definition was the map ‘derivative’ where 
only the multiplication of functions can be used. In other words, if we 
‘do not know’ the addition of functions. Therefore, for any functions 
s(x), t(x), we have  s∂t={s′t, st′}  where (′) denotes the derivative. 

Properties 7. If (G,⋅) is a semigroup then: 

(a) For every f, the hyperoperation (∂) is WASS. 

(b) If  f  is homomorphism then, again, (∂) is WASS. 

(c) If  f  is homomorphism and projection, or idempotent, i.e. f2 =f, 
then (∂) is associative. 

Proof. 
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(a) For all  x,y,z in G we have 

(x∂y)∂z = {f(x)⋅y, x⋅f(y)}∂z = 

= { f(f(x)⋅y)⋅z, (f(x)⋅y)⋅f(z), f(x⋅f(y))⋅z, (x⋅f(y))⋅f(z) } = 

= { f(f(x)⋅y)⋅z, f(x)⋅y⋅f(z), f(x⋅f(y))⋅z, x⋅f(y)⋅f(z) } 

x∂(y∂z) = x∂{f(y)⋅z, y⋅f(z)} = 

= { f(x)⋅(f(y)⋅z), x⋅f(f(y)⋅z), f(x)⋅(y⋅f(z)), x⋅f(y⋅f(z)) } = 

= { f(x)⋅f(y)⋅z, x⋅f(f(y)⋅z), f(x)⋅y⋅f(z), x⋅f(y⋅f(z)) } 

Therefore   (x∂y)∂z∩x∂(y∂z) = { f(x)⋅y⋅f(z) }≠∅,   so (∂) is WASS. 

(b) If  f  is homomorphism then we obtain 

(x∂y)∂z = { f(f(x))⋅f(y)⋅z, f(x)⋅y⋅f(z), f(x)⋅f(f(y))⋅z, x⋅f(y)⋅f(z) } 

x∂(y∂z) = { f(x)⋅f(y)⋅z, x⋅f(f(y))⋅f(z), f(x)⋅y⋅f(z), x⋅f(y)⋅f(f(z)) } 

So, again  (x∂y)∂z∩x∂(y∂z)={f(x)⋅y⋅f(z)}≠∅  and (∂) is WASS. 

(c) If  f  is homomorphism and projection then we have 

(x∂y)∂z = { f(x)⋅f(y)⋅z, f(x)⋅y⋅f(z), x⋅f(y)⋅f(z) }=x∂(y∂z). 

Therefore, (∂) is an associative hyperoperation. 

 Notice that only projection without homomorpthism does not 
give the associativity. Commutativity does not improve the results.  

3. Properties and characteristic elements. 

 We will discuss now some properties in the general case where 
(G,⋅) be a groupoid and f:G→G be a map. 

Properties 8. 

Reproductivity. For the reproductivity we must have 

x∂G =∪g∈G{f(x)⋅g, x⋅f(g)}=G  and  G∂x =∪g∈G{f(g)⋅x, g⋅f(x)}=G. 

Thus, if (⋅) is reproductive then (∂) is also reproductive, because   

∪g∈G{f(x)⋅g}=G    and    ∪g∈G{g⋅f(x)}=G. 
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Commutativity. If (⋅) is commutative then  x∂y={f(x)⋅y, x⋅f(y)}=y∂x, 
so (∂) is commutative. If f is into ZG={z∈G z⋅g=g⋅z,∀g∈G}, the 
centre of G, then (∂) is a commutative hyperoperation. If (G,⋅) is a 
COW hypergroupoid then, obviously (∂) is a COW hypergroupoid. 

Unit elements. In order to have a right unit element u we must have   
x∂u={f(x)⋅u, x⋅f(u)}∋x. But, the unit must not depend on the f(x), so 
we must have f(u)=e, where e be unit in (G,⋅) which must be a monoid. 
The same it is obtained for the left units. Therefore, the elements of the 
kernel of  f, i.e. u for which f(u)=e, are the units of (G,∂). 

Inverse elements. Let u be a unit in (G,∂), then (G,⋅) is a monoid with 
unit e and f(u)=e. For given x in order to have an inverse element x′ 
with respect to u, we must have 

x∂x′= {f(x)⋅x′, x⋅f(x′)}∋u  and   x′∂x={f(x′)⋅x, x′⋅f(x)}∋u. 

So the only cases, which do not depend on the image f(x′), are 

x′ = (f(x))-1u    and    x′ = u(f(x))-1 

the right and left inverses, respectively. We have two-sided inverses  
iff   f(x)u = uf(x). For example, if u belongs to the centre of G. In 
some cases, some elements may have a second inverse. 

Proposition 9. Let (G,⋅) be a group and f(x)=a, a constant map on G. 
Then (G,∂)/β* is a singleton. 

Proof. For all x in G we can take the hyperproduct of the elements,  a-

1     and   a-1x     

a-1∂(a-1⋅x) = {f(a-1)⋅a-1⋅x,  a-1⋅f(a-1⋅x)} = {x,a}. 

thus xβa, ∀x∈G, so β*(x)=β*(a) and (G,∂)/β* is singleton.   q.e.d. 

Remark. If (G,⋅) be a group and f(x)=e, then we obtain x∂y={x,y} 
which is the smallest incidence hyperoperation. 

Remark. Every f:G→G defines a partition of G by setting two 
elements x,y in the same class iff  f(x)=f(y), we shall call this partition 
f-partition and we will denote the class of  x  by f[x]. So, in the above 
Proposition, we have   f[x] = G = β*(x)  for all x in G. 
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Proposition 10. Let (G,⋅) be a group, e the unit, and f  homomorphism, 
then for (G,∂), we have   xβf(x). 

Proof. Indeed   e∂x = {f(e)⋅x, e⋅f(x)} = {x, f(x)}.   q.e.d. 

Obviously we have    x β f(x) β f(f(x)) β... 

Theorem 11. Let (G,⋅) be a group and f  be an homomorphism, then 

f[x] ⊂ β*(x)  for all x in G. 

Proof. Let  y∈f[x],  then f(y)=f(x) but from Proposition10, we have   

xβf(x) = f(y)βy,     so     xβ*y.      q.e.d. 

4. Special cases and applications 

 In this paragraph we present some applications and we give 
some examples in order to see that a large field of research is open. 

Application 12. Taking the application on the derivative, consider all 
polynomials of first degree  gi(x) = aix+bi. We have   

g1∂g2 = {a1a2x+ a1b1, a1a2x+b1b2}, 

so it is a hyperoperation inside the set of first degree polynomials. 
Moreover all polynomials  x+c, where c be a constant, are units. 

Application 13. If R+ be the set of positive reals and a∈R+, then we 
take the exponential map  x→xa.  The theta-operation takes the form  
x∂y = { xay, xya}  for all x,y in R+. The only one unit is the 1. In order 
to find the inverses x′, of the element x∈R+, we must have  
x∂x′={xax′, x(x′)a}∋1.  From which we obtain that for every element x, 
there are two inverses, the  x-a  and  x-1/a.       

Example 14. In the group (Z5-{0},⋅) we consider the map  f: 1→1, 
2→2, 3→3, 4→2.   Then we obtain the multiplicative table 

 

 

∂ 1 2 3 4 

1 1 2 3 {4, 2} 
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2 2 4 1 {3, 4} 

3 3 1 4 {2, 1} 

4 {4, 2} {3, 4} {2, 1} 3 
 

We remark that there exists only one fundamental class. The map-
hyperoperation is not associative but it is WASS, because, for 
example,   2∂(4∂4) = {1} and  (2∂4)∂4 = {1, 2, 3}. 

Example 15. Consider the group (Z6,+) and the map  f:Z6→Z6:x→x-1.  
Then the map-operation is given from the table 
 

∂ 0 1 2 3 4 5 

0 0 {1, 5} {2, 4} 3 {2, 4} {1, 5} 

1 {1, 5} 0 {1, 5} {2, 4} 3 {2, 4} 

2 {2, 4} {1, 5} 0 {1, 5} {2, 4} 3 

3 3 {2, 4} {1, 5} 0 {1, 5} {2, 4} 

4 {2, 4} 3 {2, 4} {1, 5} 0 {1, 5} 

5 {1, 5} {2, 4} 3 {2, 4} {1, 5} 0 
 

This is a commutative hyperoperation, it is WASS, because, for 
example,  1∂(1∂2) = {2, 4} and  (1∂1)∂2 = {0, 2, 4}, so (Z6,∂) is a 
commutative  Hv-group. One can obtain that 

(Z6,∂)/β* = {{0, 2, 4},{1, 3, 5}} ≅ Z2. 

This is not cyclic since   x∂x = {0} for all x in Z6,  i.e. every element 
has itself as the only one inverse element. 

Example 16. Consider the group (Z6,+) and the map   

f:  0→0, 1→1, 2→2, 3→3, 4→4, 5→2. 

Then the map-operation is given from the table 
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∂ 0 1 2 3 4 5 

0 0 1 2 3 4 {2, 5} 

1 1 2 3 4 5 {0, 3} 

2 2 3 4 5 0 {1, 4} 

3 3 4 5 0 1 {2, 5} 

4 4 5 0 1 2 {0, 3} 

5 {2, 5} {0, 3} {1, 4} {2, 5} {0, 3} 1 
 

One can obtain that 

(Z6,∂)/β* = {{0, 3},{1, 4},{2, 5}} ≅ Z3. 

(Z6,∂) is a cyclic Hv-group where 1 and 5 are generators of period 5.   

Example 17. Consider the group (Z6,+) and the map 

f:  0→0, 1→1, 2→2, 3→3, 4→2, 5→5. 

  Then the map-operation is given from the table 
 

∂ 0 1 2 3 4 5 

0 0 1 2 3 {2, 4} 5 

1 1 2 3 4 {3, 5} 0 

2 2 3 4 5 {0, 4} 1 

3 3 4 5 0 {1, 5} 2 

4 {2, 4} {3, 5} {0, 4} {1, 5} 0 {1, 3} 

5 5 0 1 2 {1, 3} 4 

One obtains that 

(Z6,∂)/β* = {{0, 2, 4},{1, 3, 5}} ≅ Z2. 
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For the reproductivity, the element 4+4 which does not appeared in 
the normal position in the result it appears, in the general case, as 
follows: 

x+x∈ x∂(x+x-f(x))= {f(x)+x+x-f(x), x+f(x+x-f(x))}, ∀x∈Z6, 

so the reproductivity is clear. 

 We conclude with a theorem on this field. 

Theorem 18. Consider the commutative group of integers (Z,+) and 
let  n≠0 be a natural number. Take the map f such that f(n)=0 and 
f(x)=x for all  x in Z-{n}. Then  

(Z,∂)/β* ≅ Zn. 

Proof. First, for all  x,y in Z-{n} we have, for the theta-operation, 

x∂y = {f(x)+y, x+f(y)} = {x+y}, 

so the hypersum is a singleton and coincides with the usual sum in Z. 

For all  x in Z-{n} we have 

x∂n = n∂x = {f(x)+n, x+f(n)} = {x+n, x}. 

Finally    n∂n = {f(n)+n, n+f(n)} = {n}. 

Therefore  xβ(x+n). Moreover, from the above, we obtain that for all 
x,y in Z, the hypersum {x, x+n}∂{y, y+n} belongs to the same class 
modn. Thus, the fundamental classes are the classes modn.  

Therefore  (Z,∂)/β* ≅ Zn.   q.e.d. 

 Remark that this construction is an analogous case to the case 
of the uniting the elements 0 and n, see [6]. 
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