OVER THE CONSTRUCTION OF AN HYPERSTRUCTURE OF QUOTIENTS FOR A MULTIPLICATIVE HYPERRING

R. Procesi* - R. Rota**

Summary - In this paper we construct a weak hyperfield of quotients for a class of multiplicative hyperrings.

First of all we want to recall some algebraic definitions that will be used through the paper.

An hyperring (A, \oplus, \cdot) is a set A with an hyperoperation \oplus and a product \cdot such that the following properties hold:

- i) $\forall a,b,c \in A : a \oplus (b \oplus c) = (a \oplus b) \oplus c$,
- ii) $\forall a,b \in A : a \oplus b = b \oplus a$,
- iii) $\exists 0 \in A / \forall a \in A : 0 \oplus a = a \oplus 0 = a$,
- iv) $\forall a \in A \exists ! a' \in A : a \oplus a' \ni 0, (a' = -a),$
- v) $\forall a,b,c \in A / a \in b \oplus c \Rightarrow c \in a b (c \in a \oplus b')$.
- vi) \forall a,b,c \in A : (a ·b) ·c=a · (b ·c),
- vii) $\forall a,b,c \in A : (a \oplus b) \cdot c = a \cdot c \oplus b \cdot c$,
- viii) $\forall a,b,c \in A : a \cdot (b \oplus c) = a \cdot b \oplus a \cdot c.$
- ix) $\forall a \in A : a \cdot 0 = 0 \cdot a = 0$,

We recall that (A, \oplus) satisfying i),ii),iii),iv) and v) is called canonical hypergroup.

Let us observe ([3]) that axiom v) is equivalent to v)' and also to v)":

v)'
$$\forall a,b \in A : -(a \oplus b) = -a - b$$
,

^{*} Facoltà di Scienze M.F.N. - Università La Sapienza Roma

^{**} Facoltà di Ingegneria - Università di Roma Tre

v)"
$$\forall a,b,c,d \in A : (a \oplus b) \cap (c \oplus d) \neq \emptyset \Rightarrow (c-a) \cap (b-d) \neq \emptyset$$
.

An hyperring A is called hyperfield if (A^*, \cdot) is a group, where $A^*=A\setminus\{0\}$.

A multiplicative hyperring $(A,+, \bullet)$ is an abelian group (A,+) together with an hyperproduct satisfying the following properties:

- i) \forall a,b,c \in A : a \bullet (b \bullet c)=(a \bullet b) \bullet c;
- ii) \forall a,b,c \in A: (a+b) \bullet c \subseteq a \bullet c+b \bullet c;
- iii) \forall a,b,c \in A: a \bullet (b+c) \subseteq a \bullet b+ a \bullet c;
- iv) \forall a,b \in A: $(-a) \bullet b = a \bullet (-b) = -(a \bullet b)$.

If a multiplicative hyperring satisfies, instead of properties ii) and iii), the following ones:

- ii) $\forall a,b,c \in A : (a+b) \circ c = a \circ c + b \circ c$
- iii) $\forall a,b,c \in A : a \bullet (b+c) = a \bullet b + a \bullet c$

then $(A, +, \bullet)$ is called strongly distributive. Moreover $(A, +, \bullet)$ is strongly left (right) distributive if ii)' (iii)' holds.

In [2] J. Mittas studied the possibility of immersion for an hyperring in an hyperfield and constructed the hyperfield of quotients for a particular hyperring. In this paper we want to solve the analogous problem for a multiplicative hyperring.

Let $(A,+,\bullet)$ be a multiplicative, strongly distributive, commutative hyperring; from now on we will write ab instead of $a \bullet b$ and, for any two sets X and Y, X \approx Y if and only if $X \cap Y \neq \emptyset$. We suppose that the hyperring A satisfies the following properties: i) if $ab\approx 0c$, $a\neq 0 \Rightarrow b=0$; ii) \forall X,Y,Z,W \in P*(A)==P(A)\{\infty}\ / XY\\approx ZW \Rightarrow (\forall x \infty X) and $forall x \in X$ and foral

For this structure we can prove the following lemmas:

I.- For any $a,b \in A$ if $0 \in ab$ and $a \ne 0$ then b=0.

Proof. - Since A is strongly distributive $0 \in 0c \ \forall \ c \in A$, thus from i) b=0 follows.

II.- For any $X,Y \in P^*(A)$ and for any $d \in A \setminus \{0\}$, $dX \approx dY \Leftrightarrow X \approx Y$.

Proof. - Since $dX = \bigcup dx$, $x \in X$, and $dY = \bigcup dy$, $y \in Y$, thus, from the hypothesis, there exists $z \in dX \cap dY$, that is $z \in dx$ and $z \in dy$, for some $x \in X$

and $y \in Y$; this implies, from the strong distributivity, $0 \in d(x-y) = dx - dy$ and, since $d \neq 0$, x=y, thus $X \approx Y$. The inverse implication is obvious.

III.- For any $X,Y \in P^*(A)$ and for any $d_i \in A \setminus \{0\}$, $(X+Y)d_1 \bullet \dots \bullet d_k = (Xd_1 \bullet \dots \bullet d_k) + (Yd_1 \bullet \dots \bullet d_k)$.

Proof. We can prove the lemma for k=1; the general case will follow as a consequence of the associative property. Now $(X+Y)d=\{z \mid z \in (x+y)d, x \in X, y \in Y\}=\{z \mid z \in xd+yd, x \in X, y \in Y\}=Xd+Yd$.

Denoting by A* the set A\{0} and by H the set A×A*={ $(a,b) / a \in A, b \in A*$ }, we define in H the following relation $(a,b) \rho(c,d) \Leftrightarrow ad \approx bc$; for this relation the following properties hold:

IV.- $(a,b)\rho(0,d) \Leftrightarrow a=0$.

Proof. - Since $(a,b)\rho(0,d) \Leftrightarrow ad\approx 0b$ then, from i) and $d\neq 0$, a=0 follows. Vice-versa, since $0\in 0d\cap 0b$, then $(0,b)\rho(0,d)$, $\forall b,d\in A^*$.

V.- For any a,b,c,d,f∈A, if ad≈bc, then adf≈bcf.

Proof. - If z∈ad∩bc then zfcadf and zf cbcf; thus adf≈bcf.

VI.- ρ is an equivalence relation.

Proof. - Reflexivity and symmetry are for ρ immediate consequence of commutativity in A. As for transitivity let $(a,b)\rho(c,d)$ and $(c,d)\rho(e,f)$; then ad~bc and cf ~de that is there exist $z,w\in A$ such that $z\in ad \cap bc$, $w\in cf\cap de$, thus $zw\subseteq adcf\cap bcde$. So afdc~bedc and, since $d\neq 0$, from proposition II we obtain afc~bec; now, if $c\neq 0$, again from proposition II af ~be, while if c=0 then, from proposition IV, a=e=0. In both cases it results $(a,b)\rho(e,f)$ as requested.

Let now $K=H/\rho$, we want to define in K two commutative hyperoperations \oplus and \otimes in such a way that the following conditions hold:

- 1) (K,⊕) is a canonical hypergroup;
- 2) $\forall x,y,z \in K : x \otimes (y \otimes z) = (x \otimes y) \otimes z$;
- 3) $\forall x,y,z \in K : x \otimes (y \oplus z) \subseteq (x \otimes y) \oplus (x \otimes z);$
- 4) $\forall x,y \in K : -(x \otimes y) = (-x) \otimes y = x \otimes (-y);$
- 5) $\exists 1 \in K / \forall x \in K : x \in x \otimes 1$;
- 6) $\forall x \in K \setminus \{0\} \exists y \in K \setminus \{0\} / 1 \in x \otimes y$.

For any [(a,b)], $[(c,d)] \in K$ let us define $[(a,b)] \oplus [(c,d)] = [(ad+bc,bd)] = \{[(s,t)] / s \in ad+bc, t \in bd\}$ and $[(a,b)] \otimes [(c,d)] = [(ac,bd)] = \{[(s,t)] / s \in ac, t \in bd\}$; first

In order to prove the existence of a zero element in (K,\oplus) we first recall that, as a consequence of proposition IV, $[(0,y)]=\{(0,d) / d\in A^*\}$, moreover $[(a,b)]\oplus[(0,y)]=\{[(s,t)] / s\in ay+b0, t\in by\}=[(a,b)]$; in fact, since $(by)a\subseteq ayb+b0b$, we have $bya\approx(ay+b0)b$ and, from ii), $\forall s\in ay+b0 \ \forall t\in by$ it results $sb\approx ta$. This proves that [(0,y)] is a zero for \oplus ; let us now prove that it is unique. To do this let $[(x,y)]\in K$ such that $[(a,b)]\oplus[(x,y)]=[(a,b)]$, that is $\forall (s,t)\in H$ such that $s\in ay+bx$, $t\in by$ then $sb\approx ta$. From this it follows that $ayb+bxb\approx bya$, then there exists $z\in (ayb+bxb)\cap bya$, z=z'+z'', $z'\in ayb$ and $z''\in bxb$, $z\in bya$; that is $z''\in bya-bya$ or $(bya-bya)\cap bxb\neq\emptyset$. Thus $((a-a)y)b\approx axbya$ and, from proposition II, $0y\approx bx$ with $b\neq 0$; because of i) x=0 and the uniqueness is proved.

We want now to verify the existence and uniqueness, for any $[(a,b)] \in K$, of an element $[(z,w)] \in K$ such that $[(a,b)] \oplus [(z,w)] \ni [(0,y)]$. First of all we observe that $[(a,b)] \oplus [(-a,b)] = \{[(s,t)] / s \in ab - ab, t \in bb\}$ and this set trivially contains [(0,t)]. As for the uniqueness let $[(z,w)] \in K$ such that $[(0,y)] \in [(a,b)] \oplus \bigoplus [(z,w)] = \{[(s,t)] / s \in aw + bz, t \in bw\}$; then $0 \in aw + bz$ or 0 = u + v, $u \in aw$, $v \in bz$ that is $v = -u \in -(aw) = (-a)w$ which implies $(-a)w \approx bz$ and this means [(z,w)] = [(-a,b)].

Finally we must prove condition v) in the definition of canonical hypergroup which is equivalent to the following condition: $-([(a,b)] \oplus [(c,d)]) = (-(a,b)] \oplus (-(c,d)] = [(-a,b)] \oplus [(-c,d)]$.

To prove such equality, we first must prove that $-([(a,b)] \oplus [(c,d)]) \subseteq [(-a,b)] \oplus \oplus [(-c,d)]$; to do this let [(-s,t)] such that $s \in ad+bc$, $t \in bd$. Thus $-s \in -(ad+bc) = -ad-bc$ that is -s = (-z) + (-w), $z \in ad$, $w \in bc$; from this, since -(ad) = (-a)d and -(bc) = b(-c), $[(-s,t)] \in [(-a,b)] \oplus [(-c,d)]$ follows. Similarly the inverse inclusion can be proved.

From all that has been proved we obtain the requested result. Moreover we can prove the following proposition:

X.- In (K, \oplus, \otimes) the following hold:

- α) $\forall x,y,z \in K : x \otimes (y \otimes z) = (x \otimes y) \otimes z$;
- β) $\exists 1 \in K / \forall x \in K : x \in x \otimes 1$;
- γ) $\forall x,y,z \in K : x \otimes (y \oplus z) \subset (x \otimes y) \oplus (x \otimes z);$
- δ) $\forall x,y \in K : -(x \otimes y) = (-x) \otimes y = x \otimes (-y);$
- ϵ) \forall x ϵ K, x different from zero, \exists y ϵ K, y different from zero, such that 1ϵ x \otimes y.

Proof. - \forall [(a,b)],[(c,d)],[(e,f)] \in K we have ([(a,b)] \otimes [(c,d)]) \otimes [(e,f)]={[(s,t)] / s \in ac, t \in bd} \otimes [(e,f)]={[(x,y)] / x \in se, y \in tf}={[(x,y)] / x \in (ac)e, y \in (bd)f};

of all we observe that, because of i), t is always different from zero since b and d are different from zero.

Let us now prove that \oplus and \otimes are well defined by proving the following two propositions.

VII-. If $(a',b') \in [(a,b)]$ and $(c',d') \in [(c,d)]$ then [(ad+bc,bd)] = = [(a'd'+b'c',b'd')].

Proof. - In order to prove the requested result we must prove that for any $[(s',t')] \in [(a'd'+b'c',b'd')]$ there exists $[(s,t)] \in [(ad+bc,bd)]$ such that $(s',t')\rho(s,t)$ and vice-versa. If $(a',b') \in [(a,b)]$ and $(c',d') \in [(c,d)]$ then $a'b \approx b'a$ and $c'd \approx d'c$ from which we can have $(a'd'+b'c')bd \approx b'd'(ad+bc)$; in fact, as for proposition V, we have $a'bdd' \approx b'add'$ and $c'dbb' \approx d'cbb'$ from which the set a'bdd'+c'dbb' intersects the set b'add'+d'cbb', by proposition III we have, as requested, $(a'd'+b'c')bd \approx b'd'(ad+bc)$. Now let $(s',t') \in H$ such that $s' \in a'd'+b'c'$ and $t' \in b'd'$; from $(a'd'+b'c')bd \approx b'd'(ad+bc)$ and ii) there must exist $(s,t) \in H$ with $s \in ad+bc$ and $t \in bd$ with the condition $s' t \approx t's$. Thus $(s',t')\rho(s,t)$. Similarly it can be proved that for any $[(s,t)] \in [(ad+bc,bd)]$ there exists $[(s',t')] \in [(a'd'+b'c',b'd')]$ such that $(s',t')\rho(s,t)$; thus \oplus is well defined.

VIII.- If $(a',b') \in [(a,b)]$ and $(c',d') \in [(c,d)]$, then [(ac,bd)] = [(a'c',b'd')].

Proof. - As in proposition VII we prove that for any $[(s',t')] \in [(a'c',b'd')]$ there exists $[(s,t)] \in [(ac,bd)]$ such that $(s',t')\rho(s,t)$ and vice-versa. If $(a',b') \in [(a,b)]$ and $(c',d') \in [(c,d)]$ then $a'b\approx b'a$ and $c'd\approx d'c$ that is $a'bc'd\approx b'ad'c$ or $a'c'bd\approx b'd'ac$; from ii) the requested result follows.

At this point we can study the properties of hyperstructure (K, \oplus, \otimes) .

IX.- (K,⊕) is a canonical hypergroup.

Proof. As for associativity we have $([(a,b)] \oplus [(c,d)]) \oplus [(e,f)] = \{[(s,t)] / s \in ad+bc, t \in bd\} \oplus [(e,f)] = \{[(z,w)] / [(z,w)] \in [(s,t)] \oplus [(e,f)]\} = \{[(z,w)] / z \in sf+te, w \in tf, s \in ad+bc, t \in bd\} = \{[(z,w)] / z \in (ad+bc)f+(bd)e, w \in (bd)f\}, while <math>[(a,b)] \oplus ([(c,d)] \oplus [(e,f)]) = [(a,b)] \oplus \{[(u,v)] / u \in cf+de, v \in df\} = \{[(p,q)] / [(p,q)] \in [(a,b)] \oplus [(u,v)]\} = \{[(p,q)] / p \in av+bu, q \in bv, u \in cf+de, v \in df\} = \{[(p,q)] / p \in a(df)+b(cf+de), q \in b(df)\} \text{ and, from associativity and distributivity in A, the two sets are equal. Commutativity of <math>\oplus$ follows from commutativity of + and + in A as can be easily proved.

moreover $[(a,b)]\otimes([(c,d)]\otimes[(e,f)])=[(a,b)]\otimes\{[(u,v)] / u\in ce, v\in df\}=\{[(x,y)] / x\in au, y\in bv\}=\{[(x,y)] / x\in a(ce), y\in b(df)\}.$

Thus associativity for \otimes follows from the analogous property in (A, \bullet) . Similarly commutativity in (K, \otimes) follows from commutativity in (A, \bullet) .

As for the existence of a unity let us consider the element $[(x,x)] \in K$, $x \neq 0$; obviously $[(x,x)]=[(y,y)] \forall y \in A^*$. For this element and for any other element $[(a,b)] \in K$ it results: $[(a,b)] \otimes [(x,x)]=\{[(s,t)] \mid s \in ax, t \in bx\}$. At this point we observe that, since $\{a\}bx=\{b\}ax$, from ii) we have that, $\forall s \in bx$, $t \in ax$ such that $as \approx bt$ and this implies that $[(a,b)] \in [(a,b)] \otimes [(x,x)]$.

Let us now prove property γ); \forall $[(a,b)],[(c,d)],[(e,f)] \in K$ it results $[(a,b)] \otimes ([(c,d)] \oplus [(e,f)]) = [(a,b)] \otimes \{[(s,t)] / s \in cf + de, t \in df\} = \{[(x,y)] / x \in as, y \in bt\} = \{[(x,y)] / x \in a(cf + de), y \in b(df)\} = \{[(x,y)] / x \in acf + ade, y \in bdf\}$ and $([(a,b)] \otimes [(c,d)]) \oplus ([(a,b)] \otimes [(e,f)]) = \{[(s,t)] / s \in ac, t \in bd\} \oplus \{[(u,v)] / u \in ae, v \in bf\} = \{[(z,w)] / z \in sv + tu, w \in tv\} = \{[(z,w)] / z \in acbf + bdae, w \in bdbf\} = \{[(z,w)] / z \in b(acf + ade), w \in b(bdf)\}$. Since $[(x,y)] \otimes [(b,b)] \ni [(x,y)]$, the previous set contains $\{[(x,y)] / x \in acf + ade, y \in bdf\}$, that is:

 $[(a,b)] \otimes ([(c,d)] \oplus [(e,f)]) \subseteq [(a,b)] \otimes [(c,d)] \oplus [(a,b)] \otimes [(e,f)].$

Moreover, in order to prove δ), we have $-([(a,b)]\otimes[(c,d)]) = -\{[(s,t)] / s\in ac, t\in bd\} = \{[(-s,t)] / -s\in -(ac), t\in bd\} = \{[(-s,t)] / -s\in (-a)c, t\in bd\} = \{[(-s,t)] / -s\in ac, t\in bd\} = (-[(a,b)])\otimes[(c,d)] = [(a,b)]\otimes(-[(c,d)]).$

Finally, \forall [(a,b)] \in K, a \neq 0, it results [(a,b)] \otimes [(b,a)]={[(s,t)] / s \in ab, t \in ba} \ni [(x,x)], x \neq 0, and this ends the proof.

We want now to prove, under particular hypothesis, that there exists a substructure of K which is weakly isomorphic to A . To do this let us remember that an element $1 \in A^*$ is called weak unity if and only if $\forall x \in A$ it results $1 \bullet x \ni x ([4])$. Then, if $(A, +, \bullet)$ is a multiplicative, strongly distributive, commutative hyperring such that: i) if $a \bullet b \approx 0 \bullet c$, $a \neq 0 \Rightarrow b = 0$; ii) $\forall X, Y, Z, W \in P^*(A) / XY \approx ZW \Rightarrow (\forall x \in X \text{ and } \forall w \in W \exists y \in Y \text{ and } z \in Z / x \bullet y \approx z \bullet w)$; iii) $\exists 1 \in A / \forall x \in A$ it results $1 \bullet x \ni x$, it is possible to prove the following two results:

XI.-The map $\phi: A \longrightarrow K$ defined as $\phi(a)=[(a,1)], \forall a \in A$, is a weak monomorphysm.

Proof. - Because of proposition II φ is injective; in fact, if [(a,1)]=[(b,1)], then $a \bullet 1 \approx b \bullet 1$ and, from proposition II, this implies a = b. Moreover $\varphi(a+b)=[(a+b,1)]$ while $\varphi(a) \oplus \varphi(b)=[(a,1)] \oplus [(b,1)]=\{[(s,t)] \ / \ s \in a \bullet 1 + \ b \bullet 1, \ t \in 1 \bullet 1\}$ and, since $a+b \in a \bullet 1 + b \bullet 1$ and $1 \in 1 \bullet 1$, then $\varphi(a+b) \in \varphi(a) \oplus \varphi(b)$.

Finally it results $\varphi(a \bullet b) = \{ \varphi(x) / x \in a \bullet b \} = \{ [(x,1)] / x \in a \bullet b \} \subseteq \varphi(a) \otimes \varphi(b) = = [(a,1)] \otimes [(b,1)] = \{ [(s,t)] / s \in a \bullet b, t \in l \bullet l \}$.

XII.- Each element of K belongs to a product $x \otimes y$ where $x \in Im\phi$ and y is such that there exists $y' \in Im\phi$: $y \otimes y'$ contains [(z,z)].

Proof. - For $[(a,b)] \in K$ it results $[(a,b)] \in [(a,1)] \otimes [(1,b)] = \{[(s,t)] / s \in a \bullet 1, t \in 1 \bullet b\}.$

As a consequence of what has been proved we will call (K, \oplus, \otimes) the weak hyperfield of quotients for $(A, +, \bullet)$.

REFERENCES

- P. CORSINI. Sur les homomorphismes d'hypergroupes, Rend. Sem. Mat. Univ. Padova 52 (1974)
- 2 J. MITTAS. Sur les hyperanneaux et les hypercorps, Math. Balk. 3 (1973)
- 3 J. MITTAS. Sur les structures hypercompositionelles, Proc. AHA (1990)
- 4 R. PROCESI R. ROTA. On some classes of hyperstructures, (preprint)