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OVER THE CONSTRUCTION OF AN
HYPERSTRUCTURE OF QUOTIENTS
FOR A MULTIPLICATIIVE HYPERRING

R. Procesi - R. Rota

Summary - In 'this paper we construct a weak hyperfield of quotients for a
class of multiplicative hyperrings.

First of all we want to recall some algebraic definitions that will be used
through the paper.

An hyperring (A, @ ,-) is a set A with an hyperoperation % and a product -
such that the following properties hold:

i) VabceA:a®@bD o=@ ®b) Dec.

ii) VabeA:a@Db=bDa,

iii) J0eA/VaecA:0Da=a D0=a,

iv) VaeAdla’eA:a @a’s0, (a=-a),

v) V abceA/aeb @c=cea-b(cea® b’).

vi) V abceA:(a-b)-c=a-(b-0).

vii) V abceA:(a@b)-c=ac Pbc,

viii) V abceA:a-(bDcabDac..

ix) V acA:a-0=0a=0,
We recall that (A.@) satisfying i).ii),iii),iv) and v) is called canonical
hypergroup.
Let us observe ([3]) that axiom v) is equivalent to v)" and also to v)™:

v) V abeA:—(a @b=-a-b.
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v)” ¥V abedeA:(@a®@b)nc Dd) =3 = (c -a) ~b-d) 2.

An hyperring A is called hyperfield if (A*, -) is a group, where A¥=A\{0}.

A multiplicative hyperring (A.+, ) is an abelian group (A,+) together with
an hyperproduct satisfying the following properties:

i) V abceA:ae(bec)=(ash)ec;

ii) V abceA:(a+b)esccaec+bec;
i) V abceA:aelb+c)caebraec;
iv) V abeA : (-a) sb=a ¢( —b)= —(a eb) .

If a multiplicative hyperring satisfies, instead of properties ii) and iii). the
following ones:

i)’ V ab.ceA : (a+byec=a oc + bec
iii)’ V ab,ceA :ae(b+c)=a sb+aec

then (A, +, ) is called strongly distributive. Moreover (A, +.e) is strongly
left (right) distributive if ii)’ ( iii)’) holds.

In [2] J. Mittas studied the possibility of immersion for an hyperring in an
hyperfield and constructed the hyperfield of quotients for a particular
hyperring. In this paper we want to sclve the analogous problem for a
multiplicative hyperring.

Let (A+e) be a multiplicative, strongly distributive, commutative
hyperring; from now on we will write ab instead of aeb and, for any two sets
X and Y, X =Y if and only if XnY#&. We suppose that the hyperring A
satisfics the following properties: i) if abs0c. a=0 = b=0 ; i) V
X Y.ZWeP*A)==P(AND} / XY~ZW = (V x eX and V weW 3 yeY
and z €Z / xy =zw).

For this structure we can prove the following lemmas:

L.- For any a,b<A if Ocab and a=0 then b=0.

Proof, - Since A is strongly distributive 0e0c V ceA, thus from i) b=0
follows.

IL- For any X,YeP*(A) and for any deA\{0}, dX~dY <
X~Y.

Proof. - Since dX=lJdx, xeX, and dY= Udy, yeY, thus, from the
hypothesis, there exists zedXdY, that is zedx and zedy. for some xeX
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and yeY; this implies, from the strong distributivity, 0ed(x~y)=dx—dy and.
since d#0, x=y, thus X~Y. The inverse implication is obvious.

IIL.- For any X,YeP*(A) and for any d; €A\{0}, (X+Y)d, ®
o..0od = (de ® .. .dk)+(Yd| o, .od, ).

Proof. We can prove the lemma for k=1; the general casc will follow as a
consequence of the associative property. Now (X+Y)d={z / z e(x + y)d,
xeX, yeY}={z /zexd +vd, xeX, yeY}=Xd+ Yd.

Denoting by A* the set A\{0} and by H the set AxA*={ (a.b)/ acA, be A¥}.
we define in H the following relation (a.b) p(c,d) < ad =bc: for this relation
the following properties hold:

IV.- (a,b)p(0,d) <> a=0.
Proof. - Since (a,b)p(0.d) < ad=0b then, from i) and d#0, a=0 follows.
Vice-versa, since 0e0d0b, then (0.b)p(0,d), ¥ b,deA*.

V.- For any a,b,c,d,feA, if ad~bc, then adf~bef.
Proof, - If zeadbc then zfcadf and zf cbef;, thus adfxbef.

VL- p is an equivalence relation.

Proof. - Reflexivity and symmetry arc for p immediate consequence of
commutativity in A. As for transitivity let (a,b)p(c.d) and (c.d)p(e.f); then
ad~bc and cf ~de that is there exist z,weA such that zeadnbc, weclde,
thus zwcadcf~bede. So afdc~bedc and, since d=0, from proposition II we
obtain afc=bec; now, if ¢#0, again from proposition II af =be. while if c=0
then, from proposition IV, a=e=0. In both cases it results (a.b)p(e,f) as
requested.

Let now K=H/p, we want to define in K two commutative hyperoperations &
and ® in such a way that the following conditions hold:

1) (K.9) is a canonical hypergroup;

2) V xy,zeK : x&y®z)=(xQy)®z,

3)V xy,z €K x@(y8z)c(x y)B(xBz),
4) V x.yeK | —(x8y)=( —x)@y=x B( -¥);
5)31eK/ v x €K : xex ®],

6) Vv xeK\{0} 3 yeK\{0} / 1ex®y.

For any [(a,b)], [(c.d)]€K let us define [(a,b)]D[(c,d)}=[(ad+bec.bd)]={[(s.1)]
/ sead+be, tebd} and [(a,b)]®|(c.d)]=[(ac,bd)]={[(s.1)] / seac, tebd}; first
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In order to prove the existence of a zero element in (K. @) we first recall
that, as a consequence of proposition IV, [(0,)]={(0,d) / de A*}, moreover
[(@.D]D[O0.Y)]={[(s1)] / scay+b0, teby}=[(ab)]; in fact, since (by)ac
caybtb0b, we have byva=(ay +b0)b and, from ii), V seay+b0 V teby it
results sbata. This proves that [(0.y)] is a zero for ©, let us now prove that it
is unique. To do this let [(x.y)] €K such that [(a.b)|D[(x.¥)]=[(a.b)]. that is V¥
(s,t)eH such that seaytbx, teby then sbxta. From this it follows that
ayb+bxb=bya, then there exists ze(aybtbxb)bya, z=z'+z", z’cayb and z”
ebxb, zebya; that is z”ebva-bya or (bya-bya)nbxb+D. Thus ((a-a)y)b~
=~(bx)b and, from proposition I1, Oy~bx with b0; because of i) x=0 and the
uniqueness is proved,

We want now to verify the existence and uniqueness, for any [(a,b)]eK, of
an clement [(z.w)]eK such that [(a,b)]®[(z.w)]2[(0,y)]. First of all we
observe that [(a,b)]®[(-a,b)|={[(s.t)] / seab—ab, tebb} and this set trivially
contains [(0,)]. As for the uniqueness let [(z,w)]eK such that
[(O.n]el(@.b)]® D[(z,w)I={[(s,)] / seawtbz, tebw}, then Ocaw+bz or
O=u+v, ueaw, vebz that is v=—ue—(aw)=(-a)w which implies (—a)w=bz and
this means [(z,w)]=[(-a,b)].

Finally we must prove condition v) in the definition of canonical hypergroup
which is equivalent to the following condition: —([(a.,b)]D[(c.d)])=(-
[(a.0)D® &(-[(c.d)]=[(-a.b)|S[(—c.d)].

To prove such equality, we first must prove that —([(a,b)]®[(c.d)])c[(—
a.b)]® @[(—c,d)]; to do this let [(—s.t)] such that sead+bc, tebd. Thus —-se—
(ad+bc)= =-ad-bc that is —s=(-z)+(-w), zead. webc; from this. since —
(ad)=(-a)d and —(bc)=b(-c), [(-s.t)]e[(-a,b)]@[(-c,d)] follows. Similarly
the inverse inclusion can be proved.

From all that has been proved we obtain the requested result. Moreover we
can prove the following proposition:

X.- In (K,®,®) the following hold:
o)V xy,zeK: x@(y@zk(x@y)@zi
B)y31eK/V xeK : xex®1;
) V xy,zeK : x@(yOz)c(xBy)D(x8z);
o) V x,yeK : —-(x®y)=(—x)Ry=x&(-y);
g) V xeK, x different from zero, 1 yeK, y different from

zero, such that 1exQ®y.
Proof. - ¥ [(a.b)].[(c.d)].[(e.D]eK we have ([(a.b)]®[(c.d)])®][(e.D]={[(s.D] /
seac, tebd}®[(e.D]={[(x.y)] / xese, yetl}={[(x.y)] / xe(ac)e. ye(bd)f}.
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of all we observe that, because of 1). t is always different from zero since b
and d are different from zero.

Let us now prove that @ and ® are well defined by proving the following
two propositions.

VII-.'If (2’,b’)<[(a,b)] and (¢’,d’)<[(c,d)] then [(ad+bc,bd)]=
=[(a’d’+b’c’,b’d’)].

Proof. - In order to prove the requested result we must prove that for any
[(s’.1)]e[(@d+b’c’ b’d’)] there exists [(s.t)]e[(ad+bc.bd)] such that
(s".t)p(s.t) and vice-versa. If (a’,b’)e[(a,b)] and (c".d")e[(c.d)] then a'brb’a
and ¢’d=d’c from which we can have (a’d’+b’c’)bd=b’d (ad+bc). in fact, as
for proposition V, we have a’bdd’~b’add’ and ¢’dbb’~d’cbb’ from which the
set a’bdd’+c’dbb’ intersects the set b’add’+d’cbb’. by proposition III we
have, as requested, (a’d’+ b’c’)bdab’d’(ad+bc). Now let (s'.t")eH such that
s‘ea’d+ b'c’ and t'eb’'d’; from (a’d'+b’c)bd=b’d (ad+bc) and ii) there
must exist (s,t)eH with sead+bc and tebd with the condition s't=t’s. Thus
(s”.t")p(s,1). Similarly it can be proved that for any [(s.t)] =[(ad+bc.bd)] there
exists [(s.t)]e[(a’d’+b’c’.b’d)] such that (s'.t)p(s.t): thus @ is well
defined.

VIIL- If (a’,b’)e[(a,b)] and (¢’,d’)e](c.d)] , then [(ac,bd)]=
=[(@’¢’,b’d)].

Proof. - As in proposition VII we prove that for any [(s".t)]e[(a’c’ b'd)]
there exists [(s.)]e[(ac.bd)] such that (s'.t)p(s.t) and vice-versa. If
(a’bMel(ab)] and (¢’.d)e[(c,d)] then a’beb’a and c'd=d’c that is
a’bc’d=b’ad’c or a’c’bd~b’d’ac; from ii) the requested result follows.

At this point we can study the properties of hyperstructure (K.©.9).

IX.- (K,®) is a canonical hypergroup.

Proof. As for associativity we have ([(a,B)]®@[(c.d))@[(e.DI={[(s.0] /
sead+be, tebd}®[(e.D={[(zw)] / [Ewlelsnl®[(e.DH]}={[zw)] /
zesftte, well, seadtbe, tebd}={[(z.w)] / ze(ad+bc)fH(bd)e, we(bd)f},
while [(a.b)]@([(c.)S[(e.HD=[(a.L)]ID{[(wv)] / uect +de, vedf}={{(p.q)] /
[e.lel@bI®[uv}={[pa] / peavtbu, qebv.  uechde,
vedf}={[(p,q)] / pea(dD+b(cft+de), qeb(df)} and. from associativity and
distributivity in A, the two sets are equal. Commutativity of © follows from
commutativity of + and e in A as can be easily proved.
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moreover [(a,b)]®([(c.d)I®[(e.DN)=[(a,b)]®{[(u.v)] / uece, vedf}={[(x.y)] /
xeay, yebvi={[(x,y)] / xea(ce), yeb(df)}.

Thus associativity for ® follows from the analogous property in (A.e).
Similarly commutativity in (K,®) follows from commutativity in (A,e).

As for the existence of a unity let us consider the element [(x.x)]eK, x#0;
obviously [(x.X)I=[(v,y)] V¥ yeA*. For this element and for any other
element [(a,b)]eK it results: [(a,b)|®[(x,x)]={[(s,1)] / s€ax, tebx}. At this
point we observe that, since {a}bx={b}ax, from ii) we have that, ¥ sebx,
teax such that as~bt and this implies that [(a,b)] €[(a,b)|®[(x.x)].

Let us now prove property v), V [(ab)l.[(c.d)l.[(eH]eK it results
[(@.)]&([(c.d)]D[(e.DN=[(ab)B{[(s.t)] / secf+de, tedf}= {[(xy)] / xeas,
yebt}={[(x.y)] / xea(cf+de), yeb(dD}={[(xy)] / xeacf+ade, yebdf} and
(@b (c.dDS([(a.b)IB[(e.DN)={[(s.)] / seac, tebd}®{[(uv)] / ueae,
vebf}={[(z,w)] / zesvttu, wetv}={[(z,w)] / zeacbftbdae, webdbf}=
={l(z.w)] / zeb(acf+ade), web(bdf)}. Since [(x.y)I®[(b.b)Io[(x.¥)]. the
previous set contains {[(x,y)] / xeacf+ade, yebdf}, that is:

[(@.b)]S([(c.d)]@[(e.DN)<l(a.b)]IB](c.d)]S[(@,b)]S[(e.n] -

Moreover, in order to prove 3), we have —([(a.b)]®[(c.d)])= —{[(s.0)] / seac,
tebd} = {[(-s.t)] / —se—(ac). tebd} = {[(-s,0)] / —se(-a)c, tebd}={[(-s.t)] /
—sea(-c), tebd}=(-[(a,b)N®[(c.d)I=[(a,b)|B(=[(c,d)]).

Finally, V¥ [(a,b)]eK, a=0, it resuits [(2.b)|®[(b,a)]={[(s,t)] / seab, tcba}>
3[(x,x)], x£0, and this ends the proof.

We want now to prove, under particular hypothesis, that there exists a
substructure of K which is weakly isomorphit to A . To do this let us
remember that an element 1€ A* is called weak unity if and only if V xeA it
results 1exsx (|4]). Then, if (A,+ ) is a multiplicative, strongly distributive,
commutative hyperring such that: i) if asb~0sc, a#0 = b=0 ; ii) V¥
XY, ZWeP¥A) | XY~ZW = (V xeX and V weW 3 yeY and zeZ /
xey~zew), iii) 3 1eA / V XeA it results lexax, it is possible to prove the
following two results:

XL-The map ¢ : A—— K defined as ¢(a)=[(a,1)], V acA, is
a weak monomorphysm.

Proof. - Because of proposition II ¢ is injective; in fact. if [(a,1)]=[(b,1)}.
then aelxbel and, from proposition II, this implies a=b. Moreover
p(atb)=[(a+b.1)] while ¢(a)@p(b)=[(a,1)]D[(b,1)]={[(s.t)] / scael+ bel,
telel} and, since atbeasl+bel and lelel, then ¢(a+b)ep(a)®p(b).
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Finally it results gp(aeb)={ @(x) / xeasb}={[(x.1)] / xeasb}cp(a)Ap(b)=
=[(a.DI®|(b,)]={[(s,1)] / scasb, tclel} .

XIL- Each element of K belongs to a product x®y where
xelmg and y is such that there exists y’cImo : y®y’
contains [(z,z)].

Proof. - For [(ab)]eK it results [(a,b)]e[(a,DI®[(1.b)]={[(s.t)] / seasl,
teleb}.

As a consequence of what has been proved we will call (K.©,®) the weak
hyperfield of quotients for (A.+.e) .
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