ALCUNI SPUNTI SULL’INSEGNAMENTO DELLA
MATEMATICA CON PARTICOLARE RIFERIMENTO
AD ASPETTI ELEMENTARI DELLA NOZIONE DI
CONTINUITÀ IN ANALISI MATEMATICA

Domenico Lenzi
Dipartimento di Matematica
Università di Ancona

Questo vuole essere un intervento in chiave didattica e trova la sua ragione nelle difficoltà che molte persone hanno nello studio della matematica.
Tali difficoltà, che a volte sono dovute a motivi che un po' semplicisticamente vengono espressi con la locuzione “mancanza di predisposizione”, spesso sono conseguenza di cause del tutto diverse tra cui il fatto che il linguaggio tipico della matematica non sempre è in grado di esprimere in maniera sufficientemente comprensiva e penetrante i concetti trattati. Ciò non per inadeguatezza del linguaggio stesso ma perché esso non riesce a trasmettere, quando non è ben padroneggiato, tutte le sfumature di cui la matematica è ricca e che una persona normale dovrebbe teoricamente essere in grado di recepire. In definitiva ci sembra che si verifichi un fenomeno simile a quello che si ha anche con la lingua italiana. Infatti c’è chi a volte, volendo dare più incisività a un suo messaggio, è costretto a ricorrere al dialetto.

Diamo un esempio di “prosa” tratto da un lavoro scientifico di Analisi Matematica:

Sia \(f : \mathbb{R} \to \mathbb{R} \) una funzione, \(x_0 \in \mathbb{R} \) e \(P_0 = (x_0, f(x_0)) \), poniamo, per \(x \in \mathbb{R} \) ed \(a \in \mathbb{R} \):

i) \[
P(x, \alpha) = (x, f(x_0) + \alpha(x - x_0))
\]
\[
\{(y, f(y)) : x_0 \leq y \leq x\} \quad \text{se} \quad x_0 \leq y \leq x
\]

ii) \[
G_f(x) = \{(y, f(y)) : x \leq y \leq x_0\} \quad \text{se} \quad x \leq y \leq x_0
\]
Lo scritto sarebbe senz’altro più incisivo se, pur conservando le formule i) e ii), $P(x, \alpha)$ fosse preannunciato come il punto di ascissa x che è situato sulla retta passante per $(x_0, f(x_0))$ e avente coefficiente angolare a. Inoltre sarebbe bene preannunciare ciascuno dei due insiemi di ii) come quella parte del grafico della funzione f che è compresa tra i punti $(x_0, f(x_0))$ e $(x, f(x))$.

Un’altra situazione significativa può essere ricavata dall’algebra. Infatti, se $(\mathcal{A}, +, \cdot)$ è un’anello ed a, b, c, sono tre elementi distinti di \mathcal{A}, possiamo dire che essi costituiscono una “terna di Steiner” se godono della seguente proprietà: comunque si prendano due elementi distinti tra $\{a, b, c\}$, il loro prodotto o l’opposto di questo coincide col terzo elemento. Questa proprietà tradotta in “matematicese” diventa:

iii) $\forall x, y \in \{a, b, c\}; x \neq y \Rightarrow$

$\Rightarrow (x \cdot y \in \{a, b, c\} \setminus \{x, y\} \quad o \quad -x \cdot y \in \{a, b, c\} \setminus \{x, y\})$.

Tuttavia la iii), pur presentando lo stesso concetto è meno espressiva.

Certo qualcuno potrebbe dire che il problema della comprensione della matematica non è così grave, e tutto sommato potrebbe risolversi facendo studiare questa disciplina solo chi non vive in un rapporto conflittuale con essa. Ed uno studioso eminente come S. Banach era proprio di questo avviso (si veda [PJ]).

Tuttavia pensiamo che un atteggiamento del genere sia riduttivo. Infatti una limitazione nello studio della matematica priverebbe i nostri ragazzi di uno strumento formidabile di promozione culturale e, soprattutto, di formazione sul piano della razionalità. In tale ottica la “dimensione matematica” è una delle acquisizioni fondamentali dell’uomo e relegare questa materia ad un ruolo secondario, riservandola solo a pochi eletti, ricalcherebbe quell’errore che la nostra scuola ha già fatto con l’abolizione del latino. Per cui le difficoltà incontrate da molti studenti in quest’altra disciplina, che potevano essere un sintomo da valutare attentamente, sono state rimosse semplicemente eliminandone il veicolo e non – come sarebbe stato opportuno – eliminandone le cause.
Inoltre, un’educazione matematica opportunamente realizzata avrebbe un’importanza fondamentale non solo sul piano sociale, ma anche sul piano pratico, contribuendo ad attenuare quella “mortalità” dei nostri studenti di ingegneria, che ha reso l’Italia uno dei paesi in cui il bisogno di ingegneri si fa maggiormente sentire.

Ma come fare per operare un cambiamento efficace? Non è facile dare una risposta esaustiva. Comunque, oltre ad eliminare per quanto è possibile gli impedimenti di tipo linguistico, quello che bisogna fare senz’altro è rimuovere tutte le difficoltà di carattere mnemonico (1) che spesso assillano i nostri studenti, trasferendo ad essi un’abitudine ormai diffusa anche nell’ambito dei docenti. Infatti, è difficile trovare uno studioso che nel corso di una conferenza non si aiuti nell’esposizione con degli appunti o con lucidi e lavagna luminosa. E non si capisce perché questa pratica non debba essere consentita ad uno studente, almeno parzialmente, anche in sede di esami. Quello che importa è che gli abbia chiaro le linee generali dell’argomento trattato, riesca a capire e apprezzare una dimostrazione, comprendendo i vari passaggi e il ruolo che le varie ipotesi vengono in essa. In definitiva, riesca a percepire il palpitò che una pagina di matematica emana.

E affinché questo avvenga è necessario “tornare a parlare” di matematica con i nostri studenti, cercando di spiegare le ragioni di questa disciplina e le linee di pensiero che essa spesso nasconde, evidenziando i collegamenti con la realtà (se ci sono (2)) o illustrando i motivi di impostazioni che appaiono in contrasto con una certa nostra maniera di percepire la realtà stessa (cfr [M]).

Non vogliamo dilungarci in esempi, anche perché ciò che interessa è soprattutto smuovere le acque. Ci limitiamo a ricordare qualche situazione, senza pretendere che la nostra risposta sia la più adeguata sul piano metodologico.

Si pensi alla continuità di una funzione reale \(f \) definita su di un intervallo chiuso \([a, b]\). Quasi tutti i testi universitari del primo anno dicono che \(f \) è continua in \([a, b]\) se essa è continua in ogni punto dell’intervallo in questione.

1. Siamo convinti del fatto che sia importante educare la memoria, tuttavia ciò dovrebbe essere attuato con intervanti ad hoc.

2. Si pensi all’algebra Lineare, disciplina perfetta nel suo rigore e nella sua semplicità, che nei corsi universitari del primo anno ha finito, purtroppo, col camuffare la vecchia geometria.
Così, come di frequente avviene in matematica, si esprime in termini "locali" una proprietà di tipo "globale". Però, purtroppo, quella proprietà locale non sembra tradurre in maniera adeguata una certa visualizzazione intuitiva, che spesso si cerca di dare della nozione di funzione continua in un intervallo chiuso dicendo che essa esprime l’idea mentale che ci si fa di una curva "materiale" tracciata su di un foglio (da sinistra verso destra o da destra verso sinistra) senza sollevare la penna. O meglio, mentre ci si può render conto facilmente che "l’idealizzazione" di una tale curva gode di quella proprietà locale, solo una mente dotata di notevoli doti speculative riesce a capire agevolmente che quella proprietà, estesa a tutti i punti dell’intervallo [a, b], può – ma non sempre, come si vedrà – far sparire come per incanto alcune situazioni “patologiche”.

È facile dare un esempio elementare di tali situazioni. Basta immaginare di associare ad ogni numero reale x compreso tra 0 e 1 un numero reale compreso tra 0 e lo stesso x. Si viene così ad avere una funzione f continua in 0. Infatti essa assume in 0 il valore 0 e, grazie al “teorema dei carabinieri”, ha 0 come limite per x che tende a 0, poiché risulta “imprigionata” tra la funzione nulla e la funzione y = x (queste ultime funzioni hanno chiaramente come limite 0, per x tendente a 0).

Orbene, in una ideale rappresentazione grafica quella funzione apparirebbe, salvo casi particolari, come uno sfarfallio di punti che pur si “addensano” intorno al punto (0, 0). Per cui può risultare difficile afferrare che, nel caso in cui la continuità riguardi tutti i punti dell’intervallo di definizione, quel turbinio di punti si acquieti come come per incanto.

Sul piano didattico il problema si potrebbe risolvere considerando dapprima il caso delle funzioni monotone. Ad esempio, se f è una funzione crescente in un intervallo chiuso [a, b], allora è abbastanza intuitivo il fatto che la continuità si esprima attraverso la proprietà che la f assuma in [a, b] tutti i valori compresi tra f(a) ed f(b). Poiché si può provare agevolmente che per funzioni reali monotone quest’ultima proprietà è equivalente a quella della continuità in ogni punto di [a, b], è chiaro che essa può essere un “cavallo di Troia” utile alla penetrazione nelle difese psicologiche dello.
studente, onde egli possa “accettare” l’ usuale definizione di continuità. Tanto più che molte delle funzioni reali continue definite in un intervallo chiuso \([a, b]\) si possono ripartire in funzioni monotone definite in un numero finito di sottointervalli chiusi di \([a, b]\).

Si potrebbero dare esempi di funzioni continue in \([a, b]\) che non sono monotone in alcun intervallo incluso in \([a, b]\); tuttavia quelli che io conosco richiedono dimostrazioni un pò pesanti.

Situazioni eccezionali più tenui possono essere dovute anche alla presenza in \([a, b]\) di alcuni punti particolari, ad esempio punti in cui la “sfortunata” funzione non sia nè crescente, nè decrescente, non abbia un minimo relativo e non abbia un massimo relativo (“i punti critici”)

Di questi punti critici è bene dare esempi significativi, ma senza ricorrere a costruzioni difficoltose e dense di complicazioni che mettano in ombra il fatto essenziale che si vuol presentare. Spesso una descrizione discorsiva e snella, di cui si riesca ad intravedere la traduzione in “matematiche” (si veda (G), §0, n°2), può risultare più efficace sul piano didattico.

Un caso interessante è quello della funzione così definita nell’intervallo chiuso \([0, 1]\). Si prendano sull’asse delle ascisse i punti di ascissa 1, 1/2, 1/4, ..., 1/2^n, ...; quindi si considerino tutte le circonferenze che hanno rispettivamente come diametro il segmento compreso tra due di quei punti che nella data successione sono “vicini” (cioè, l’uno immediato successivo dell’altro). Dopodiché si consideri di ogni circonferenza, alternativamente al decrescere del diametro, la semicirconferenza i cui punti hanno coordinate non negative oppure quella i cui punti hanno coordinate non positive, iniziando dalla semicirconferenza del primo tipo.

Poiché quelle semicirconferenze esprimono delle funzioni continue che “si saldano” negli estremi degli intervalli chiusi in cui sono definite, allora la funzione che nasce da questa saldatura è continua nell’intervallo semiaperto a sinistra \((0, 1]\); inoltre essa ha chiaramente 0 come limite al tendere a 0 della variabile, per cui può essere univocamente prolungata in una funzione continua \(f\) definita su tutto l’intervallo chiuso \([0, 1]\); infatti, basta far corrispondere a 0 il valore 0. Ebbene, 0 è chiaramente per la funzione \(f\) uno dei punti critici di cui si parla.
Una persona che sentisse del disagio a liquidare con disinvolta-
ra la continuità di quelle “semicirconferenze” (che in altri momenti
 sarà bene evidenziare rigorosamente) potrebbe sostituire ad ogni
semicirconferenza il triangolo equilatero costruito sul suo diamet-
 tro, che sta dalla stessa parte della semicirconferenza (rispetto
all’asse delle ascisse). Anzi, la funzione costruita con i triangoli
equilateri dà luogo a tanti altri casi significativi, purchè si immagi-
ni di ruotare il suo grafico intorno all’origine degli assi cartesiani,
avendo l’accortezza di non far perdere ad esso il carattere di grafi-
co di una funzione. E per questo basta che l’angolo di rotazione sia
inferiore in valore assoluto a 30 gradi.

Invece chi pensasse che una matematica senza formule sia meno
importante (tuttavia noi non siamo d’accordo con questo giudizio)
può considerare la ben nota funzione che assume valore $x \cdot \sin(1/x)$
quando x è diverso da zero ed assume valore 0 in 0. Anche in tale
caso è immediato rendersi conto che 0 è un punto critico per la
funzione data.

Richiamiamo l’attenzione su di un’altra proprietà che caratteriz-
za la continuità delle funzioni monotone non decrescenti definite
su di un intervallo. I libri che abbiamo consultato non la riportano,
forse perché può essere considerata patrimonio del nostro folklore
matematico. Tuttavia ci sembra che didatticamente valga la pena
citarla, per un’analogia che c’è con un altro modo di vedere la con-
tinuità in una situazione del tutto diversa.

Si pensi all’usuale rappresentazione grafica di una relazione
d’ordine su di un insieme finito \mathcal{R} (“diagramma di Hasse”) e ad un
percorso “in salita” su tale rappresentazione, che vada da un elemen-
to p ad un elemento q (con $p < q$). È naturale dire che questo percor-
so è continuo quando esso avviene “senza salti” rispetto ad \mathcal{R}. Cioè,
due elementi del percorso che risultino l’uno il successivo immedia-
to dell’altro nel percorso sono tali anche sul diagramma. In sintesi:
in \mathcal{R} non c’è alcun elemento intermedio rispetto ad essi. Cioè, come
si suol dire, quel percorso esprime una catena massimale del sottoinsieme di \mathcal{R} costituito dagli elementi compresi tra p e q.

Ebbene, si verifica subito che condizione necessaria e sufficien-
te perché una funzione reale non decrescente f definita nell’intervallo chiuso (a, b) sia continua è che il suo grafico sia una catena massimale rispetto all’ordinamento definito in $\mathbb{R} \times \mathbb{R}$ ponendo $(x, y) \leq (z, t)$ se e solo se $x \leq z$ e $y \leq t$; purché ci si restringa al sottoinsieme di $\mathbb{R} \times \mathbb{R}$ costituito dagli elementi compresi tra $(a, f(a))$ e $(b, f(b))$. Un discorso analogo vale, mutatis mutandis, se f è non crescente.

Concludiamo dando un piccolo esempio volto a sottolineare l’opportunità di una presa di coscienza da parte dello studente del ruolo che ipotesi e proprietà varie possono giocare nell’ambito di un teorema. Si pensi alla caratterizzazione (legata alla nozione di catena massimale) delle funzioni reali continue e non decrescenti richiamata poco fa. Se percorriamo una qualsiasi delle sue facili dimostrazioni, ci rendiamo conto agevolmente che la completanza di \mathbb{R} non gioca in essa alcun ruolo, per cui la dimostrazione può essere automaticamente trasportata al caso delle funzioni non decrescenti assumendo valori razionali e definite su intervalli razionali chiusi, avendo avuto cura di trasferire “pari pari” ai numeri razionali tutti i concetti necessari per parlare di limiti e continuità. Però, purtroppo, non si può dire altrettanto della caratterizzazione classica ricordata ancor prima. Infatti, una funzione non decrescente f definita sull’intervallo razionale chiuso $[a, b] \cap \mathbb{Q}$ (dove \mathbb{Q} è l’insieme dei numeri razionali) e $a, b \in \mathbb{Q}$ ed assumendo tutti i valori razionali compresi tra i due numeri razionali $f(a)$ e $f(b)$ è senz’altro una funzione continua in ogni punto di $[a, b] \cap \mathbb{Q}$. Tuttavia questa affermazione non può essere invertita, potendosi dare molti controsensi. Ci limitiamo a considerare quello che si ottiene dalla funzione che sui numeri reali strettamente minori di $\sqrt{2}$ assume valore 0 e sugli altri numeri reali assume valore 1. Tale funzione è non decrescente, inoltre essa è continua su ogni numero reale diverso da $\sqrt{2}$, per cui è continua su tutti i numeri razionali, dove assume valori razionali. Ne consegue che la sua restrizione f a $[0, 1] \cap \mathbb{Q}$ è una funzione continua e non decrescente, tuttavia f non assume tutti i valori dell’intervallo razionale $[f(0), f(2)] \cap \mathbb{Q} (= [0, 1] \cap \mathbb{Q})$, dal momento che $1/2$ è un valore razionale che non è assunto da essa.
Quanto detto or ora induce a pensare che forse sarebbe più aderente all’idea intuitiva di continuità una definizione restrittiva che non sia di tipo topologico, ma sia legata semplicemente alla nozione di ordinamento totale. In definitiva, dato un insieme totalmente ordinato (\mathcal{A}) e dati due elementi $a, b \in \mathcal{A}$, con $a < b$, si potrebbe dire che una funzione f definita sull’“intervallo” $[a, b] = \{x \in \mathcal{A} : a \leq x \leq b\}$ e assume valori in \mathcal{A} è “monotonamente continua” se essa è monotona ed assume tutti i valori compresi tra $f(a)$ e $f(b)$. Più in generale, f potrebbe dirsi “continua” in $[a, b]$ se $[a, b]$ si può suddividere in un numero finito di intervalli chiusi, che a due a due si intersecano al più in un estremo, sui quali la restrizione di f è monotonicamente continua.

Sarebbe interessante vedere se anche con questo tipo di definizione compaiono situazioni paradossali. È chiaro che sulla base della definizione data or ora la funzione definita su $[0, 2] \cap \mathbb{Q}$, che abbiamo visto poco fa, non sarebbe più continua.

Le considerazioni svolte precedentemente fanno capire come uno studio efficace dei numeri reali e delle funzioni reali, essenziale per un’educazione matematica completa, non possa prescindere da un esame approfondito di situazioni riguardanti sottinsiemi significativi dell’insieme dei numeri reali. Io penso che esso (ma non solo esso) sia molto più illuminante e formativo di tanti complicati, assillanti ed estenuanti esercizi che, come forche cadute, aspettano al vanco degli esami scritti i nostri poveri studenti, simili alle famigerate espressioni frazionali a più piani che tutti deprechiamo, e che contribuiscono a dare un’immagine arcaica della matematica. Un’immagine che ognuno di noi dovrebbe sentirsì impegnato a cancellare.

BIBLIOGRAFIA

